Browse > Article
http://dx.doi.org/10.3740/MRSK.2002.12.11.865

Thermal Stability of Titanium and Cobalt Thin Films on Silicon Oxide Spacer  

Cheong, Seong-Hwee (Department of Materials Sciecne and Engineering, The University of Seoul)
Song, Oh-Sung (Department of Materials Sciecne and Engineering, The University of Seoul)
Kim, Min-Sung (Department of Information and Communications Engineering, School of Information Engineering)
Publication Information
Korean Journal of Materials Research / v.12, no.11, 2002 , pp. 865-869 More about this Journal
Abstract
We investigated the reaction stability of titanium, cobalt and their bilayer films with side-wall spacer materials of SiO$_2$ for the salicide process. We prepared Ti 350 $\AA$, Co 150 $\AA$, Co 150 $\AA$/Ti 100 $\AA$ and Ti 100 $\AA$/Co 150 $\AA$ films on 1000 $\AA$-thick thermally grown SiO$_2$ substrates, respectively. Then the samples were rapid thermal annealed at the temperatures of $500^{\circ}C$, $600^{\circ}C$, and $700^{\circ}C$ for 20 seconds. We characterized the sheet resistance of the metallic layers with a four-point probe, surface roughness with scanning probe microscope, residual phases with an Auger depth profilometer, phase identification with a X-ray diffractometer, and cross-sectional microstructure evolution with a transmission electron microscope, respectively. We report that Ti reacted with silicon dioxide spacers above $700^{\circ}C$, Co agglomerated at $600^{\circ}C$, and Co/Ti, Ti/Co formed CoTi compound requiring a special wet process.
Keywords
cobalt; titanium; Co/Ti bilayers; salicide; thermal stability; spacers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Hong, B.K. Patnaik, B.Z. Li, P. Liu, Z. Sun, and G.A. Rozgonyi, MRS Spring, 311 (1993)
2 H. Fang, M.C. Oztu, E.G. Seebauer, D.E. Batchelor, Journal of the Electrochemical Society, 146(11), 4240 (1999)   DOI
3 S.L. Hsia, T.Y. Tan, J. Appl. Phys., 72(5) (1992)   DOI
4 R.T. Tung, Applied Surface Science, 117/118, 268 (1997)   DOI   ScienceOn
5 J.B. Lasky, J.S. Nakos, O.J. Cain, and P.J. Geiss, IEEE Transactions on Electron Devices, 38, 262 (1991)   DOI   ScienceOn
6 A.E. Morga, E.K. Broadbent, K.N. Ritz, D.K. Sadana and B.J. Burrow, J. Appl. Phys., 64, 344 (1988)   DOI
7 J.P. Gambino, E.G. Colgan, A.G. Domenicucci, and B. Cunningham, J. Electrochem. Soc., 145(4) (1998)   DOI
8 Y.S. Ahn and O.S. Song, Korean Journal of Materials Research, 11(2), 71 (2001)   과학기술학회마을
9 C.Y. Ting, M. Wittmer, S.S. lyer and S.B. Brodsky, J. Electrochem. Soc., 131, 2934 (1984)   DOI
10 G.J.P. Krooshof, F.H.P. M.Habraken, W.F. van der Weg, L. Van den hovw, K. Maex and R.F. De Keersmaecker, J. Appl. Phys., 63, 5110 (1988)   DOI
11 H. Zhang, J. Poole, R. Eller, and M. Keefe, J. Vac. Sci. Technol. A, 17(4), 1904 (1999)   DOI
12 S.M. Sze, VLSI Technology, Johy Wiley & Sons (1988)
13 S.M. Sze, Semiconductor Devices, McGraw-Hill (1985)
14 J. Chen, J.P. Colinge, D. Flandre, R. Gillon, J.P. Raskin, and D. Vanhoenacker, J. Electrochem. Soc., 144(7) (1997)
15 S. Wolf, Silicon Processing for the VLSI era, Lattice Press. (1995)
16 J.J. Sun, J.Y. Tsai, and C.M.Osburn, IEEE Transactions on Electron Devices, 45(9), 1946 (1998)   DOI   ScienceOn
17 R.T. TUNG, MRS Spring(1996)
18 C.M. Osburn, J.Y. Tsai and J. Sun, J. Electron Material, 25, 1725 (1996)   DOI
19 J. Lutze, G. Scott, M. Manley, IEEE Electron Device Letters, 21(4), 155 (2000)   DOI   ScienceOn