Browse > Article
http://dx.doi.org/10.4283/JKMS.2017.27.3.077

Rotatable Anisotropy Field in Exchange Coupled CoFe/MnIr(2.5 nm) Thin Films  

Yoon, Seok Soo (Department of Physics, Andong National University)
Kim, Dong Young (Department of Physics, Andong National University)
Abstract
The rotatable anisotropy effect was observed in the ferromagnetic resonance measurement in exchange coupled ferromagnetic/antiferromagnetic thin films and it was due to rotation of antiferromagnetic layer by the exchange coupling energy. We analyzed the CoFe thickness dependence of rotatable anisotropy field and ferromagnetic resonance linewidth in exchange coupled $CoFe(t_F)/MnIr(2.5nm)$ thin films. The rotatable anisotropy field was inversely propositional to the CoFe thickness and it was well fitted by the rotatable anisotropy energy of $0.96erg/cm^2$. The ferromagnetic resonance linewidth were linearly propositional to the rotatable anisotropy field in $t_F$ < 50 nm, while it was more dominated by the eddy current effect in $t_F$ > 50 nm.
Keywords
rotatable anisotropy; linewidth; exchange coupling; critical thickness; eddy current;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999).   DOI
2 M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001).   DOI
3 G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 2489 (1989).
4 S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nature Mater. 3, 862 (2004).   DOI
5 S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3 868 (2004).   DOI
6 D. Y. Kim and S. S. Yoon, J. Kor. Magn. Soc. 24, 140 (2014).   DOI
7 R. D. McMichael, M. D. Stiles, P. J. Chen, and W. F. Egelhoff, Phys. Rev. B 58, 8605 (1998).   DOI
8 J. Geshev, L. G. Pereira, and J. E. Schmidt, Phys. Rev. B 66, 134432 (2002).   DOI
9 L. Wee, R. L. Stamps, L. Malkinskil, and Z. Celinski, Phys. Rev. B 69, 134426 (2004).   DOI
10 C. Binek, S. Polisetty, X. He, and A. Berger, Phys. Rev. Lett. 96, 067201 (2006).   DOI
11 D. Y. Kim, S. S. Yoon, C. G. Kim, M. Tsunoda, and M. Takahashi, IEEE Trans. Magn. 45, 3865, (2009).   DOI
12 W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).   DOI
13 W. H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962).   DOI
14 T. Sato, M. Tsunoda, and M. Takahashi, J. Appl. Phys. 95, 7513 (2004).   DOI
15 M. Tsunoda, Y. Tsuchiya, T. Hashimoto, and M. Takahashi, J. Appl. Phys. 87, 4375 (2000).   DOI
16 D. Y. Kim and S. S. Yoon, J. Kor. Magn. Soc. 24, 140 (2014).   DOI
17 S. Yuan, K. Yu, L. M. Yu, S. X. Cao, C. Jing, and J. C. Zhang, J. Appl. Phys. 101, 113915 (2007).   DOI
18 D. Y. Kim, Sae Mulli 58, 308 (2009).
19 D. Y. Kim and S. S. Yoon, J. Kor. Magn. Soc. 23, 37 (2013).   DOI
20 S. Misukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys. 40, 580 (2001).   DOI
21 P. Krivosik, N. Mo, S. Kalarickal, and C. E. Patton, J. Appl. Phys. 101, 083901 (2007).
22 C. E. Patton, C. H. Wilts, and F. B. Humphrey, J. Appl. Phys. 38, 1358 (1967).   DOI