Browse > Article
http://dx.doi.org/10.4283/JKMS.2016.26.1.007

Effects of Annealing of Gas-atomized Fe-Si-Cr Powder  

Jang, Pyungwoo (College of Science and Engineering, Cheongju University)
Abstract
Effects of annealing of the gas-atomized Fe-9%Si-2%Cr powder which is suitable for high frequency application in mobile devices because of its high electrical resistivity were studied with an emphasis on the order-disorder phase transition. The formation of B2 ordered phase could not be suppressed during atomization process. When the powder was annealed at a temperature higher than $550^{\circ}C$ the peak diffracted from $DO_3$ phase could be detected. With increasing annealing temperature lattice parameter and coercivity decreased. An interesting phenomenon was an abrupt increment of coercivity in the powder annealed at $450^{\circ}C$. Highest permeability could be shown in the powder annealed at a relative low temperature of $150^{\circ}C$ and then the permeability decreased with annealing temperature. The above-mentioned results could be successfully explained by both the formation of $DO_3$ ordered phases and the change of electrical resistivity of the Fe-Si-Cr powder which was also originated from the phase transition.
Keywords
Fe-Si-Cr powder; $DO_3$ phase; B2 phase; annealing; electrical resistivity; permeability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Gonzalez and Y. Houbaert, Rev. Metal 49, 178 (2013).   DOI
2 O. Kubaschewski, Iron-binary Phase Diagrams, Springer-Verlag, Berlin (1982).
3 A. I. Al-Sharif, M. Abu-Jafar, and A. Qteish, J. Phys.: Condens. Matter. 13, 2807 (2001).   DOI
4 K. Hilfrich, W. Kolker, W. Petry, O. Scharpf, and E. Nembach, Scripta Metallurgica et Materialia 24, 39 (1990).   DOI
5 K. Narita and M. Enokizono, IEEE T. Magn. 15, 911 (1979).   DOI
6 B. Viala, J. Degauque, M. Fagot, M. Baricco, E. Ferrara, and F. Fiorillo, Mater. Sci. Eng. A 212, 62 (1996).   DOI
7 J. H. Yu, J. S. Shin, J. S. Bae, Z. H. Lee, T. D. Lee, and H. M. Lee, J. Korean Inst. Metals and Mater. 39, 394 (2001).
8 J. S. Shin, J. S. Bae, H. J. Kim, H. M. Lee, T. D. Lee, E. J. Lavernia, and Z. H. Lee, Mater. Sci. Eng. A 407, 282 (2005).   DOI
9 Y. Liu, Z. Liu, S. Guo, Y. Du, B. Huang, J. Huang, S. Chen, and F. Liu, Intermetallics 13, 393 (2005).   DOI
10 D. Singh and S. Dangwal, J. Mater. Sci. 41, 3853 (2006).   DOI
11 H. J. Jung, Ph.D. Thesis, Hanyang University, Korea (2012).
12 W. Ciurzynska, J. Zbroszczyk, J. Olszewski, J. Frackowiak, and K. Narita, J. Magn. Magn. Mater. 133, 351 (1994).   DOI
13 D. Bouchara, M. Fagot, J. Detauque, and J. Bras, J. Magn. Magn. Mater. 83, 377 (1990).   DOI
14 F. Faudot, J. F. Rialland, and J. Bigot, Physica Scripta 39, 263 (1989).   DOI
15 D. Ruiz, T. Ros-Yanez, L. Vandenbossche, L. Dupre, R. E. Vandenberghe, and Y. Houbaert, J. Magn. Magn. Mater. 290, 1423 (2005).