Browse > Article
http://dx.doi.org/10.4283/JKMS.2015.25.6.175

First-principles Study on the Half-metallicity and Magnetism of the (001) Surfaces of (AlP)1/(CrP)1 Superlattice  

Bialek, Beata (Department of Physics, Inha University)
Lee, Jae Il (Department of Physics, Inha University)
Abstract
The half-metallicity and magnetism of the (001) surfaces of $(AlP)_1/(CrP)_1$ superlattice were investigated by means of FLAPW (Full-potential Liniarized Augmented Plane Wave) method. We considered four types of (001) surface termination, i.e., Al(S)-, Cr(S)-, P(S)Al(S-1)- and P(S)Cr(S-1)-term systems. We found that only Cr(S)-term system maintains the half-metallicity at the surface as only this system has the calculated magnetic moment of integer number of bohr magnetons. The magnetic moment of Cr(S) atom in the system was $3.02{\mu}_B$ which was increased from the bulk value by the effects of band narrowing and increased spin-splitting at the surface. The electronic density of states of the P(S) atom in the P(S)Al(S-1)-term showed very sharp surface states due to the broken $p_z$ bonds at the surface. We found there is still a strong p-d hybridization between the P(S) and Cr(S-1) layers in the P(S)Cr(S-1)-term which causes a considerable increase of magnetic moment of P(S) atom.
Keywords
$(AlP)_1/(CrP)_1$ superlattice; surface magnetism; half-metallicity; electronic structure calculation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).   DOI
2 R. A. de Groot, F. M. Muller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).   DOI
3 I. Galanakis and P. H. Dederichs, Phys. Rev. B 66, 174429 (2002).   DOI
4 S. P. Lewis, P. B. Allen, and T. Sasaka, Phys. Rev. B 55, 10253 (1997).   DOI
5 Y. S. Dedkov, U. Rudiger, and G. Guntherrodt, Phys. Rev. B 65, 064417 (2002).   DOI
6 H. Akinaga, T. Manago, and M. Shirai, Jap. J. Appl. Phys. 39, L1118 (2000).   DOI
7 W. H. Xie, Y. Q. Xu, B. G. Liu, and D. G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003).   DOI
8 I. Galanakis and P. Mavropoulos, Phys. Rev. B 67, 104417 (2003).   DOI
9 K. Kusakabe, M. Geshi, H. Tsukamoto, and N. Suzuki, J. Phys.: Condens. Matter 16, 55639 (2004).
10 O. Volnianska, P. Jakubas, and P. Boguslawski, J. Alloys Compd. 423, 191 (2006).   DOI
11 M. Sieberer, J. Redinger, S. Khmelevskyi, and P. Mohn, Phys. Rev. B 73, 024404 (2006).   DOI
12 G. Y. Gao, K. L. Yao, E. Sasioglu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Phys. Rev. B 75, 174442 (2005).
13 O. Volnianska and P. Boguslawski, Phys. Rev. B 75, 224418 (2007).   DOI
14 E. Yan, Physica B 407, 879 (2012).   DOI
15 X.-S. Song, S. Dong, and H. Zhao, Compu. Mater. Sci. 84, 306 (2014).   DOI
16 M. Merabet, D. Rached, S. Benalia, A. H. Reshek, N. Bettahar, H. Righi, H. Baltache, F. Soyalp, and M. Labair, Superlattices and Microstructures 65, 195 (2014).   DOI
17 E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).
18 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)   DOI
19 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI
20 D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).   DOI
21 G. Rhaman, S. Cho, and S. C. Hong, J. Magn. Magn. Mater. 310, 2192 (2007).   DOI