Browse > Article
http://dx.doi.org/10.4283/JKMS.2015.25.2.031

Half-metallicity and Magnetism at the (001) Surfaces of the Quaternary Heusler Alloys CoFeCrZ (Z = Ga, Ge): A First-principles Study  

Kim, Dong-Chul (Department of Electrical and Electronics Engineering, Halla University)
Lee, Jae Il (Department of Physics, Inha University)
Abstract
Recently, a first-principles study led to a prediction that quaternary Heusler compounds, CoFeCrZ (Z = Ga, Ge) are excellent half-metallic ferromagnets. In this study, we investigate the electronic and the magnetic properties at the (001) surfaces of CoFeCrGa and CoFeCrGe by means of the full-potential linearized augmented plane wave (FLAPW) method within generalized gradient approximation. We considered two types of surface termination: CoFe-terminated and CrZ-terminated surfaces, Z being either Ga or Ge. From the calculated total magnetic moments and the local density of states, we found that half-metallicity is not preserved for all the surfaces. But the calculated atomic density of states showed that CrGa-terminated surface of the CoFeCrGa is almost half-metallic. The magnetic moment of the Co, Fe, or Cr atoms at the surface or subsurface layers in each system had very different values.
Keywords
half-metallicity; surface magnetism; electronic structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).   DOI
2 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).   DOI
3 J. C. Li and Y. J. Jin, Appl. Surf. Sci. 283, 876 (2013).   DOI   ScienceOn
4 X. G. Xu, D. L. Zhang, Y. Wu, X. Zhang, X. Q. Li, H. L. Yang, and Y. Jiang, Rare Metals 31, 107 (2012).   DOI
5 J. L. Pan, J. Ni, and B. C. Yang, Physica B 405, 1580 (2010).   DOI   ScienceOn
6 G. N. Li, Y. J. Jin, and J. I. Lee, Chin. Phys. B 19, 097102 (2010).   DOI   ScienceOn
7 R. A. de Groot, F. M. Müller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).   DOI
8 Y. S. Dedkov, U. Rudiger, and G. Guntherodt, Phys. Rev. B 65, 064417 (2002).   DOI   ScienceOn
9 I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).   DOI   ScienceOn
10 S. P. Lewis, P. B. Allen, and T. Sasaka, Phys. Rev. B 55, 10253 (1997).   DOI   ScienceOn
11 T. Graf, C. Felser, and S. P. P. Parkin, Prog. Solid State Chem. 39, 1 (2011).   DOI   ScienceOn
12 H. C. Kandpal, G. H. Fecher, and C. Felser, J. Phys. D 40, 1507 (2007).   DOI   ScienceOn
13 J. Kuebler, G. H. Fecher, and C. Felser, Phys. Rev. B 76, 024414 (2007).   DOI   ScienceOn
14 S. Wurmehl, G. H. Fecher, H. C. Kandpal, C. Felser, V. Ksenofontov, and H.-J. Lin, Appl. Phys. Lett. 88, 032503 (2006).   DOI   ScienceOn
15 M. Kim and J. I. Lee, J. Korean Phys. Soc. 60, 1068 (2012).   DOI   ScienceOn
16 X. Dai, G. Liu, G. H. Fecher, C. Felser, Y. Li, and H. Liu, J. Appl. Phys. 105, 07E901 (2009).   DOI
17 P. Klaer, B. Balke, V. Alijani, J. Winterlik, G. H. Fecher, C. Felser, and H. J. Elmers, Phys. Rev. B 84, 144413 (2011).   DOI
18 V. Alijani, J. Winterlik, G. H. Fecher, S. S. Naghavi, and C. Felser, Phys. Rev. B 83, 184428 (2011).   DOI   ScienceOn
19 G. Y. Gao, L. Hu, K. L. Yao, B. Luo, and N. Liu, J. Alloy. Compd. 551, 539 (2013).   DOI   ScienceOn
20 E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).
21 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI   ScienceOn
22 D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).   DOI   ScienceOn