Browse > Article
http://dx.doi.org/10.4283/JKMS.2013.23.4.122

Thickness Dependence of Amorphous CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy  

Yim, H.I. (Department of Physics, Sookmyung Women's University)
Abstract
Perpendicular magnetic anisotropy (PMA) is the phenomenon of magnetic thin film which is preferentially magnetized in a direction perpendicular to the film's plane. Amorphous multilayer with PMA has been studied as the good candidate to realization of high density STT-MRAM (Spin Transfer Torque-Magnetic Random Access Memory). The current issue of high density STT-MRAM is a decrease in the switching current of the device and an application of amorphous materials which are most suitable devices. The amorphous ferromagnetic material has low saturated magnetization, low coercivity and high thermal stability. In this study, we presented amorphous ferromagnetic multilayer that consists of an amorphous alloy CoSiB and a nonmagnetic material Pd. We investigated the change of PMA of the $[CoSiB\;t_{CoSiB}/Pd\;1.3nm]_5$ multilayer ($t_{CoSiB}$ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 nm, and $t_{Pd}$ = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 nm) and $[CoSiB\;0.3nm/Pd\;1.3nm]_n$ multilayer (n = 3, 5, 7, 9, 11, 13). This multilayer is measured by VSM (Vibrating Sample Magnetometer) and analyzed magnetic properties like a coercivity ($H_c$) and a magnetization ($M_s$). The coercivity in the $[CoSiB\;t_{CoSiB}\;nm/Pd\;1.3nm]_5$ multi-layers increased with increasing $t_{CoSiB}$ to reach a maximum at $t_{CoSiB}$ = 0.3 nm and then decreased for $t_{CoSiB}$ > 0.3 nm. The lowest saturated magnetization of $0.26emu/cm^3$ was obtained in the $[CoSiB\;0.3nm/Pd\;1.3nm]_3$ multilayer whereas the highest coercivity of 0.26 kOe was obtained in the $[CoSiB\;0.3nm/Pd\;1.3nm]_5$ mutilayer. Additional Pd layers did not contribute to the perpendicular magnetic anisotropy. The single domain structure evolved in to a striped multi-domain structure as the bilayer repetition number n was increased above 7 after which (n > 7) the hysteresis loops had a bow-tie shapes.
Keywords
perpendicular magnetic anisotropy; CoSiB/Pd; amorphous ferromagnetic material; CoSiB; Pd;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. J. A. den Broeder, D. Kuiper, A. P. van de Mosselaer, and W. Hoving, Phys. Rev. Lett. 60, 2769 (1988).   DOI   ScienceOn
2 G. H. O. Daalderop, P. J. Kelly, and M. F. H. Schuurmans, Phys. Rev. B 50, 9989 (1994).   DOI   ScienceOn
3 S.-I. Iwasaki and K. Takemura, IEEE Trans. Magn. 11, 1173 (1975).   DOI
4 J. F. Weaver, A. F. Carlsson, and F. J. Madix, Surf. Sci. Rep. 50, 107 (2003).   DOI   ScienceOn
5 N. Nishiura, T. Hirai, A. Koganei, T. Ikeda, K. Okant, Y. Sekiguchi, and Y. Osada, J. Appl. Phys. 91, 5246 (2002).   DOI   ScienceOn
6 G. H. O. Daalderop, P. J. Kelly, and F. J. A. den Broeder, Phys. Rev. Lett. 68, 682 (1992).   DOI   ScienceOn
7 J. Y. Hwang, S. S. Kim, and J. R. Rhee, J. Magn. Magn. 310, 1943 (2007).   DOI   ScienceOn
8 J. Y. Hwang. J. S. Park, H. I. Yim, T. W. Kim, and S. B. Lee, in Perpendicular Magnetic Anisotropy in Amorphous Ferromagnetic CoSiB/Pt Multilayers, Nano Korea 2009 (PNM188, KINTEX, Goyang, Korea, August 27, 2009).
9 J.-H. Park, C. Part, T. Jeong, M. T. Moneck, M. T. Nufer, and J.-G. Zhu, J. Appl. Phys. 103, 07A917 (2008).   DOI
10 S. Jeong and H. I. Yim, J. Kor. Phys. Soc. 60, 450 (2011).
11 J. Carrey, A. E. Berkowitz, W. F. Egelhoff, Jr., and D. J. Smith, Appl. Phys. Lett. 83, 5259 (2003).   DOI   ScienceOn
12 V. W. Gue, H.-S. Hee, Y. Luo, M. T. Moneck, and J.-G. Zhu, IEEE Trans. Magn. 45, 2686 (2009).   DOI   ScienceOn
13 B. Window and G. L. Hearding, J. Vac. Sci. Technol. A4, 996 (1986).
14 D. Weller, L. Folks, M. Best, E. E. Fullerton, B. D. Terris, G. J. Kusinski, K. M. Krichnan, and G. Thomas, J. Appl. Phys. 89, 7525 (2001).   DOI   ScienceOn
15 G. A. Bereto and R. Sinclair, J. Magn. Magn. Mater. 134, 173 (1994).   DOI   ScienceOn