Browse > Article
http://dx.doi.org/10.4283/JKMS.2012.22.5.157

Electronic Structures and Magnetism at the Interfaces of Rocksalt Structured Half-metallic NaN and CaN  

Kim, Dong-Chul (Department of Electrical and Electronics Engineering, Halla University)
Bialek, Beata (Department of Physics, Inha University)
Lee, Jae-Il (Department of Physics, Inha University)
Abstract
Magnetism at the interfaces of rocksalt structured half-metals, NaN and CaN were investigated by use of the first-principles band calculations. The electronic structures for the simple interface and mixed interface systems were calculated by the FLAPW (full-potential linearized augmented plane wave) method. From the calculated number of electrons in muffin-tin spheres of each atom, we found, for the simple interface system, that the magnetic moment of the N atom in the CaN (NaN) side is increased (decreased) compared to those of inner N atoms. For the mixed interface system, the magnetic moments of the interface N atoms are similar to the averaged value for the inner N atoms in CaN and NaN side. Among four interface N atoms, the N atom connected to Na atoms in the upper and down layers has the largest magnetic moment and that connected to Ca atoms has the smallest. The number of p electrons in each N atom and the calculated density of states explain well the above situation.
Keywords
half-metallicity; interface magnetism; electronic structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Kusakabe, M. Geshi, H. Tsukamoto, and N. Suzuki, J. Phys.: Condens. Matter 16, s5639 (2007).
2 M. Sieverer, J. Redinger, S. Khmelevskyi, and P. Mohn, Phys. Rev. B 73, 024404 (2006).   DOI   ScienceOn
3 G. Y. Gao, K. I. Yao, E. Sasioglu, L. M. Sandratskii, Z. L. Liu, and J. I. Jiang, Phys. Rev. B 75, 17442 (2007).
4 S. J. Dong and H. Zhao, Appl. Phys. Lett. 98, 182501 (2011).   DOI   ScienceOn
5 C. W. Zhang, J. Phys. D: Appl. Phys. 41, 085006 (2008).   DOI   ScienceOn
6 G. Y. Gao, K. L. Yao, M. H. Song, and Z. L. Liu, J. Magn. Magn. Mater. 323, 2652 (2011).   DOI   ScienceOn
7 K. A. Gschneidner, Jr. and L. Eyring, Handbook on the Physics and Chemistry of Rare Earths Vol. 1, North-Holland, Amsterdam (1978) p. 532.
8 M. Geshi, K. Kusakabe, H. Nagara, and N. Suzuki, Phys. Rev. B 76, 054433 (2007).   DOI   ScienceOn
9 Q. Volianska and P. Boguslawski, Phys. Rev. B 75, 224418 (2007).   DOI   ScienceOn
10 X. D. Liu, B. Lu, T. Limori, K. Nakatsuji, and F. Komori, Surf. Sci. 602, 1844 (2008).   DOI   ScienceOn
11 I. Galanakis and P. Mavropoulos, Phys. Rev. B 67, 104417 (2003).   DOI   ScienceOn
12 I. K. Yao, J. L. Jiang, Z. L. Liu, and G. Y. Gao, Phys. Lett. A359, 326 (2006).
13 O. Volinanska, P. Jakubas, and P. Boguslawski, J. Alloys Compd. 423, 191 (2006).   DOI   ScienceOn
14 G. Y. Gao, K. L. Yao, E. Sastoglu, L. M. Sandratskii, Z. L. Liu, and J. L. Jiang, Phys. Rev. B 75, 174442 (2007).   DOI   ScienceOn
15 E. Yan, Physica B 407, 879 (2012).   DOI   ScienceOn
16 Y. Zhang, Y. Qi, and Y. Hu, J. Magn. Magn. Mater. 324, 2523 (2012).   DOI   ScienceOn
17 E. Ahmadian, J. Supercond. Nov. Magn. 25, 1589 (2012).   DOI
18 김동철, B. Bialek, 이재일, 한국자기학회지 22, 117 (2012).
19 E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981).   DOI
20 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).   DOI
21 M. Weinert, G, Schneider, R. Podloucky, and R. Redinger, J. Phys.: Condens. Matter 21, 084201 (2009).   DOI   ScienceOn
22 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).   DOI   ScienceOn
23 D. D. Koelling and B. N. Harmon, J. Phys. C 10, 3107 (1977).   DOI   ScienceOn