Browse > Article
http://dx.doi.org/10.4283/JKMS.2011.21.6.214

Effects of Sputtering Conditions on the Growth of Ag/CoFeB Layer on MgO(100) Substrate  

Jeon, Bo-Geon (Department of Materials Science and Engineering, Graduate School of Green Energy Technology, Chungnam National University)
Jeong, Jong-Ryul (Department of Materials Science and Engineering, Graduate School of Green Energy Technology, Chungnam National University)
Takahashi, Hirokazu (Department of Electronic Engineering, Tohoku University)
Tsunoda, Masakiyo (Department of Electronic Engineering, Tohoku University)
Takahashi, Migaku (Department of Electronic Engineering, Tohoku University)
Abstract
In this study, we have systematically investigated the effect of sputtering conditions on the microstructural properties of Ag/CoFeB thin film on MgO substrate. It was found that the crystallinity and surface roughness of the Ag film strongly depends on the Ar sputtering pressure and sputtering power. Epitaxial growth of Ag(100) film on MgO(100) substrate was achieved under the sputtering conditions of high sputtering power and elevated temperature. XRR (X-ray reflectivity) and high-resolution TEM (transmission electron microscopy) measurements also revealed the interfacial roughening in the Ag/CoFeB interface due to the island structure formation and intermixing between Ag and CoFeB.
Keywords
Ag/CoFeB thin film; MgO; Epitaxial growth; DC magnetron sputtering; X-ray reflectivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Feng, S. v. Dijken, J. F. Feng, J. M. D. Coey, T. Leo, and D. J. Smith, J. Appl. Phys. 105, 033916 (2009).   DOI   ScienceOn
2 T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).   DOI   ScienceOn
3 J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).   DOI   ScienceOn
4 S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nature Mater. 3, 862 (2004).   DOI   ScienceOn
5 S. Yussa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3, 868 (2004).   DOI   ScienceOn
6 D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005).   DOI   ScienceOn
7 A. G. Petukhov, A. N. Chantis, and D. O. Demchenko, Phys. Rev. Lett. 89, 107205 (2002).   DOI   ScienceOn
8 T. Nozaki, N. Tezuka, and K. Inomata, Phys. Rev. Lett. 96, 027208 (2006).   DOI   ScienceOn
9 J. Mathon and A. Umerski, Phys. Rev. B 71, 220402R (2005).   DOI   ScienceOn
10 G. Autes, J. Mathon, and A. Umerski, Phys. Rev. B 80, 024415 (2009).   DOI
11 C. Li, R. Wu, A. J. Freeman, and C. L. Fu, Phys. Rev. B 48, 8317 (1993).   DOI   ScienceOn
12 W. Shen, D. Mazumdar, X. Zou, X. Liu, B. D. Schrag, and G. Xiao, Appl. Phys. Lett. 88, 182508 (2006).   DOI   ScienceOn
13 S. U. Jen, Y. D. Yao, Y. T. Chen, J. M. Wu, C. C. Lee, T. L. Tsai, and Y. C. Chang, J. Appl. Phys. 99, 053701 (2006).   DOI   ScienceOn