Browse > Article
http://dx.doi.org/10.4283/JKMS.2006.16.1.011

Mössbauer Study of Ti1-x-yCoxFeyO2  

Kim, Eng-Chan (Department of Physics, Yeungnam University)
Lee, S.R. (Department of Physics, Yeungnam University)
Kim, T.H. (Department of Physics, Yeungnam University)
Ryu, Y.S. (Department of Physics, Yeungnam University)
Cho, J.H. (Department of Physics, Yeungnam University)
Joh, Y.G. (Department of Physics, Yeungnam University)
Kim, D.H. (Department of Physics, Yeungnam University)
Abstract
[ $M\"{o}ssbauer$ ] spectra of $Ti_{1-x-y}Co_xFe_yO_2(0.01{\leq}x,\;y{\leq}0.05)$ prepared with $^{57}Fe$ enriched iron have been taken at various temperatures ranging from 80 to 300K. The Mossbauer spectrum of $Ti0.94Co_{0.03}Fe_{0.03}O_2$ consists of a ferromagnetic (six-Lorentzian), a paramagnetic phase (doublet) and armorphous phase over all temperature ranges. Isomer shifts indicate $Fe^{3+}$ for the ferromagnetic phase and the paramagneic phase of $Ti_{1-x-y}Co_xFe_yO_2$ samples. It is noted that the magnetic hyperfine field of ferromagnetic phase had the value about 1.5 times as large as that of u-fe. The XRB data for $Ti_{1-x-y}Co_xFe_yO_2$ showed mainly rutile phase with tetragonal structures without any segregation of Co and Fe into particulates within the instrumental resolution limit. The magnetic moment per (Co+Fe) atom in $Ti0.94Co_{0.03}Fe_{0.03}O_2$, under the applied field of 1T was estimated to be about $0.332{\mu}_B$ which is ten times as large as that of $Ti0.97Co_{0.03}Fe_{0.03}O_2,\;0.024{\mu}_B$ per Co atom, suggesting a high spin configuration of Co and fe ions.
Keywords
magnetic semiconductors; rutile; low spin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. M. Sullivan and S. C. Erwin, Phy. Rev. B 67, 144415 (2003)   DOI   ScienceOn
2 Y. L. Soo et al., Appl. Phys. Lett. 81, 655(2002)   DOI   ScienceOn
3 J. Konig, H.-H. Lin, and A. H. MacDonald, Phys. Rev. Lett. 84, 5628(2000)
4 S. A. Chambers, Materials Today April, 34(2002)
5 S. R Shinde et al., cond-mat/0203576
6 G. S. Herman, M. R. Sievers, and Y. Gao, Phys. Rev. Lett. 84, 3354(2000)   DOI   ScienceOn
7 T. Uustare, J. Aarik, and M. Elango, Appl. Phys. Lett. 65, 2551(1994)   DOI   ScienceOn
8 W. K. Park, R. J. Ortega-Hertogs, J. S. Moodera, A. Punnoose, and M. S. Seehra, J. Appl. Phys. 91, 8093(2002)
9 H. M. Lee, S. J. Kim, I. B. Shim, and C. S. Kim, IEEE Tans. Magn. 39, 2788(2003)   DOI   ScienceOn
10 K. S. Baek, E. J. Hahn, and H. N. Ok, Phys. Rev. B 36, 763(1987)   DOI   ScienceOn
11 S. A. Chambers, S. Thevuthasan, R. F. C. Farrow. R. F. Marks, J. U.Thiele, L. Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L. Ederer, and U. Diebold, Appl. Phy. Lett. 79, 3467(2001)   DOI   ScienceOn
12 Y. Matsumoto, M. Murakami, T. Shono, T. Hasagawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854(2001)   DOI   ScienceOn