Browse > Article
http://dx.doi.org/10.5000/EESK.2010.14.3.059

Seismic Vulnerabilities of a Multi-Span Continuous Bridge Considering the Nonlinearity of the Soil  

Sun, Chang-Ho (울산대학교 건설환경공학부)
Lee, Jong-Seok (울산대학교 건설환경공학부)
Kim, Ick-Hyun (울산대학교 건설환경공학부)
Publication Information
Journal of the Earthquake Engineering Society of Korea / v.14, no.3, 2010 , pp. 59-68 More about this Journal
Abstract
Seismic performances of existing structures should be assessed with more accuracy for cost-effective retrofits. Existing bridges are assessed by the current guidelines in which a simple method has been adapted considering the technical level of engineers of the historical time of construction. Recently many probabilistic approaches have been performed to reflect the uncertainties of seismic input motions. Structures are modeled frequently with the neglection of soil foundations or modeled occasionally with elastic soil spring elements to consider the effect of the soil on the structural response. However, soil also shows nonlinearity under seismic events, so this characteristic should be reflected in order to obtain a more accurate assessment. In this study, a 6-span continuous bridge has been analyzed under various seismic events, in which the soil was represented by equivalent linear spring elements having different properties according to the intensities of the input motions experienced. The seismic vulnerabilities with respect to the failure of piers and the dropping of the super-structure were evaluated on the basis of the analysis results.
Keywords
Vulnerability; Fragility curve; Seismic performance; Nonlinearity of soil;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 道路橋示方書.同解說, V 耐震設計編, 日本道路協會, 2002
2 P.B Schnabel, J. Lismer and H. B. Seed, “SHAKE a computer program for earthquake response analysis of horizontally layered sites,” No. UCB/EERC 72-12, University of California, Berkeley, 1972.
3 Takeda, T., Sozen, M. A., and Nielsen, N. N., “Reinforced Concrete Response to Simulated Earthquakes,” Journal of Structural Division, ASCE, Vol.96, No.12, 2257-2573, 1970.
4 도로교표준시방서, 건설교통부, 1996
5 Mander, J.B, Priestley, M.J.N., and Park, R. “Theoretical stress-strain model fot confined concrete,” Journal of Structual Divison., ASCE, Vol.114 No.8, 1804-1826, 1988.   DOI   ScienceOn
6 이대형, 박창규, 정영수, “다경간 교량의 받침조건에 따른 지진취약도 해석,” 대한토목학회논문집, 제27권, 제2A호, 227-236, 2007.
7 Expanding and Using Knowledge to Reduce Earthquake Losses, FEMA 383 Report, 2003.
8 고현무, 이지호, 강준원, 조호현, “취약도해석을 위한 철근콘크리트 교각의 지진손상 평가인자 결정,” 한국지진공학회 추계학술발표대회 논문집, 308-315, 2002.
9 정영수, 박창영, 박지호, “철근콘크리트 교각의 연성능력에 따른 지진취약도,” 한국콘크리트학회 논문집, 제19권, 제1호,91-102, 2007.
10 김민규, 함대기, 최인길, “철도교의 지진취약도 함수 도출을 위한 안전율평가 결과 이용,” 한국지진공학회 논문집, 제13권, 제4호, 57-65, 2009.   DOI
11 김동석, 박원석, 고현무, 최창열, “배율조정 및 스펙트럼 맞춤 입력지반운동모델에 대한 비선형 단자유도 시스템의 파손확률,” 한국지진공학회 논문집, 제12권, 제1호, 11-20, 2008.
12 이대형, 정영수, 양동욱, “지진 진동수에 따른 교량의 내진성능기반 취약도 해석 방법,” 한국콘크리트학회 논문집, 제21권, 제2호, 187-197, 2009.   과학기술학회마을   DOI   ScienceOn
13 김재천, 변지석, 신수봉, “지반특성을 고려한 FCM 교량의 지진취약도 분석,” 한국지진공학회 논문집, 제12권, 제3호, 37-44, 2008.   과학기술학회마을   DOI   ScienceOn
14 Shinozuka, M., Feng, M. Q., Kim, H. K., and Kim, S. H., “Nonlinear Static Procedure for Fragility Curve Development,” Journal of Engineering Mechanics, Vol.126, No.12, 1287-1295, 2000.   DOI   ScienceOn
15 도로교설계기준, 한국도로교통협회, 2005.
16 Shinozuka, M., Feng, M. Q., Lee, J., and Naganuma, T., “Statical Analysis of Fragility Curves,” Journal of Engineering Mechanics, Vol.126, No.12, 1224-1231, 2000.   DOI   ScienceOn