Browse > Article
http://dx.doi.org/10.7735/ksmte.2015.24.4.363

Thermally Adjusted Graphene Oxide as the Hole Transport Layer for Organic Light-Emitting Diodes  

Shin, Seongbeom (The 1st R&D Institute, Agency for Defense Development)
Publication Information
Journal of the Korean Society of Manufacturing Technology Engineers / v.24, no.4, 2015 , pp. 363-367 More about this Journal
Abstract
This paper reports on thermally adjusted graphene oxide (GO) as the hole transport layer (HTL) for organic light-emitting diodes (OLEDs). GO is generally not suitable for HTL of OLEDs because of intrinsic specific resistance. In this paper, the specific resistance of GO is adjusted by the thermal annealing process. The optimum specific resistance of HTL is found to be $10^2{\Omega}{\cdot}m$, and is defined by the maximum current efficiency of OLEDs, 2 cd/A. In addition, the reasons for specific resistance change are identified by x-ray photoelectron spectroscopy (XPS). First, the XPS results show that several functional groups of GO were detached by thermal energy, and the amount of epoxide changed substantially following the temperature. Second, the full width at half maximum (FWHM) of the C-C bond decreased during the process. That means the crystallinity of the graphene improved, which is the scientific basis for the change in specific resistance.
Keywords
Graphene oxide; Thermal annealing; Hole transport layer; X-ray photoelectron spectroscopy(XPS);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Geim, A. K., Novoselov, K. S., 2007, The Rise of Graphene, Nature Materials, 6:3 183-191.   DOI   ScienceOn
2 Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., Geim, A. K., 2008, Fine Structure Constant Defines Visual Transparency of Graphene, Science, 320:5881 1308.   DOI   ScienceOn
3 Balog, R., Jorgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Lagsgaard, E., Baraldi, A., Lizzit, S., 2010, Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption, Nature Materials, 9:4 315-319.   DOI   ScienceOn
4 Park, J., Jo, S. B., Yu, Y. J., Kim, Y., Yang, J. W., Lee, W. H., Kim, H. H., Hong, B. H., Kim, P., Cho, K., Kim, K. S., 2012, Single-gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping, Adv. Mater., 24:3 407-411.   DOI   ScienceOn
5 Han, M. Y., Ozyilmaz, B., Zhang, Y., Kim, P., 2007, Energy Band-gap Engineering of Graphene Nanoribbons, Phys. Rev. Lett., 98:20 206805.   DOI   ScienceOn
6 Papagno, M., Rusponi, S., Sheverdyaeva, P. M., Vlaic, S., Etzkorn, M., Pacile, D., Moras, P., Carbone, C., Brune, H., 2012, Large Band Gap Opening between Graphene Dirac Cones Induced by Na Adsorption on to an Ir Superlattice, ACS NANO, 6:1 199-204.   DOI   ScienceOn
7 Schniepp, H. C., Li, J. L., Mcallister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud'homme, R. K., Car, R., Saville, D. A., Aksay, I. A., 2006, Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, The Journal of Physical Chemistry B, 110:17 8535-8539.   DOI
8 Mcallister, M. J., Li, J. L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera-Alonso, M., Milius, D. L., Car R., Prud'homme, R. K., Aksay, I. A., 2007, Single Sheet Functionalized Graphene by Oxideation and Thermal Expansion of Graphite, Chem. Mater., 19:18 4396-4404.   DOI   ScienceOn
9 Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., Ruoff, R. S., 2007, Synthesis of graphene-based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, 45:7 1558-1565.   DOI   ScienceOn
10 Hirata, M, Gotou, T., Horiuchi, S., Fujiwara, M., Ohba, M., 2004, Thin-film Particles of Graphite Oxide 1: High-yield Synthesis and Flexibility of the Particles, Carbon, 42:14 2929-2937.   DOI
11 Park, S., Ruoff, R. S., 2009, Chemical Methods for the Production of Graphenes, Nature Nanotech., 4:4 217-224.   DOI   ScienceOn
12 Cote, L. J., Cruz-Silva, R., Huang, J., 2009, Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite, Journal of the American Chemical Society, 131:31 11027-11032.   DOI   ScienceOn
13 Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A., Piner R. D., Nguyen S. T., Ruoff R. S., 2006, Graphene-based composite materials, Nature, 442, 282-286.   DOI   ScienceOn
14 He, Q., Wu, S., Gao, S., Cao, X., Yin, Z., Li, H., Chen, P., Zhang, H., 2011, Transparent, Flexible, All-reduced Graphene Oxide Thin Film Transistors, ACS NANO, 5:6 5038-5044.   DOI   ScienceOn
15 Joung, D., Chunder, A., Zhai, L., Khondaker, S. I., 2010, High Yield Fabrication of Chemically Reduced Graphene Oxide Field Effect Transistors by Dielectrophoresis, Nanotechnolgy, 21:16 165202-165206.   DOI   ScienceOn
16 Li, S. S., Tu, K. H., Lin, C. C., Chen, C. W., Chhowalla, M., 2010, Solution-processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells, ACS NANO, 4:6 3169-3174.   DOI   ScienceOn
17 Kim, G. W., Jeon, K. M., Youn, H., Yang, M. Y., 2012, The Efficiency Enhancement of Organic Light-emitting Diodes Fabricated by Solution Process, International Conference of Manufacturing Technology Engineers, 168.
18 Yun, J. M., Yeo, J. S., Kim, J., Jeong, H. G., Kim, D. Y., Noh, Y. J., Kim, S. S., Ku, B. C., Na S. I., 2011, Solution-processable Reduced Graphene Oxide as a Novel Alternative to PEDOT:PSS Hole Transport Layers for Highly Efficient and Stable Polymer Solar Cells, Adv. Mater., 23:42 4923-4928.   DOI   ScienceOn
19 Lee, B. R., Kim, J. W., Kang, D., Lee, D. W., Ko, S. J., Lee, H. J., Lee, C. L., Kim, J. Y., Shin, H. S., Song, M. H., 2012, Highly Efficient Polymer Light-Emitting Diodes Using Graphene Oxide as a Hole Transport Layer, ACS NANO., 6:4 2984-2991.   DOI   ScienceOn
20 Hummers, W. S., Offeman, R. E., 1958, Preparation of Graphite Oxide, J. AM. Chem. Soc. 80:6 1339-1399.   DOI
21 Seok, J. Y., Lee, J., Yang, M. Y., 2015, Indium Tin Oxide-free Large-area Flexible Organic Light-emitting Diodes Utilizing Highly Conductive PEDOT:PSS Anode Fabricated by the Knife Coating Method, J. Korean Soc. Manuf. Technol. Eng., 24:1, 049-055.
22 Sung, J., Lee, E., 2008, Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process, Transactions of the Korean Society of Machine Tool Engineers, 17:2, 045-050.