Browse > Article
http://dx.doi.org/10.7850/jkso.2020.25.2.026

Studies on the Optimal Conditions of Feeding and Light Supply for the Long-Term Cultivation of Meiofauna in the Laboratory  

SHIN, AYOUNG (Marine Ecosystem Research Center, KIOST)
KIM, DONGSUNG (Marine Ecosystem Research Center, KIOST)
KANG, TEAWOOK (Marine Research Center, Korea National Park service)
OH, JE HYEOK (Marine Ecosystem Research Center, KIOST)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.25, no.2, 2020 , pp. 26-41 More about this Journal
Abstract
In order to culture a life for the physiological and ecological research of the meiofauna, this study aimed to identify the most ideal condition in which the meiofauna can be cultured within a laboratory by setting various environmental conditions. The sediment deposits and seawater were collected from the intertidal zone in Mallipo of the west coast. A aquarium in which the internal environment can be controlled by constantly maintaining the temperature and humidity was fabricated and the culture experiments of the collected meiofauna were conducted together with the sea water and sediment deposits collected. The experiment 1 was conducted after establishing the similar environment as the collecting location. Under the same condition as the experiment 1, the experiment 2 verified a difference between when live foods were supplied and were not. In the experiment 3, the changes in the meiofauna colony were checked according to with or without light and live foods. In the results of culturing experiments, the habitat density and the number of appeared classification groups of the meiofauna colony were relatively higher both in the water tank with supplying the live foods and under the condition of having light in 12-hour cycle than those in the aquarium without live foods and under no light condition. In addition, the habitat density of meiofauna cultured within a laboratory exhibited relatively higher value than that under the natural state.
Keywords
Meiofauna; Meiofuana culture; Feeding condition; Light condition; Cultivation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bongers, T. and H. Ferris, 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends. Ecol. Evol., 14(6): 224-228.   DOI
2 Braeckman, U., J. Vanaverbeke, M. Vincx, D. van Oevelen and K. Soetaert, 2013. Meiofauna metabolism in suboxic sediments: currently overestimated. PloS One, 8(3): 1-9.
3 Castel, J., 1992. The meiofauna of coastal lagoon ecosystems and their importance in the food web, Vie Milieu, 42: 125-135.
4 Aller, R.C. and Y. Aller, 1992. Meiofauna and solute transport inmarine muds. Limnol. Oceanogr., 37: 1018-1033.   DOI
5 Balsamo, M., G. Albertelli, V.U. Ceccherelli, R. Coccioni and M.A. Colangelo, 2010. Meiofauna of the Adriatic Sea: current state of knowledge and future perspective. Chem. Ecol., 26: 45-63.   DOI
6 Gerlach, S.A., 1971. On the importance of marine meiofauna for benthos communities. Oecologia., 6(2): 176-190.   DOI
7 Ceccherelli, V.U., M. Mistri and P. Franzoi, 1994. Predation impact on the meiobenthic harpacticoid Canuella perplexa in a lagoon of the Po River Delta. Italy, Estuaries, 17: 283-287.   DOI
8 De Morais, L.T. and J.Y. Bodiou, 1984. Predation on meiofauna by juvenile fish in a western Mediterranean flatfish nursery ground, Mar. Biol., 82: 209-215.   DOI
9 Duarte, C.M. and J. Cebrian, 1996. The fate of marine autotrophic production. Limnol. Oceanogr., 41: 1758-1766.   DOI
10 Bonaglia, S., F.J.A. Nascimento, M. Bartoli, I. Klawonn and V. Bruchert, 2014. Meiofauna increases bacterial denitrification in marine sediments. Nature Comm., 5: 5133.   DOI
11 Giere, O., 2009. Meiobenthology. The microscopicmotile fauna of aquatic sediments, 2nd edn. Springer-Verlag, Berlin, pp. 1-512.
12 Gontikaki, E., D. van Oevelen, K. Soetaert and U. Witte, 2011. Food web flows through a sub-arctic deep-sea benthic community. Prog. Oceanog., 91: 245-259.   DOI
13 Gwyther, J., 2003. Nematode assemblages from Avicennia marina leaf litter in a temperate mangrove forest in south-eastern Australia. Mar. Biol., 142: 289-297.   DOI
14 Heip, C., G. Duineveld, E. Flach, G. Graf, W. Helder, P.M.J. Herman, M. Lavaleye, J.J. Middelburg, O. Pfannkuche, K. Soetaert, T. Soltwedel, H. de Stigter, L. Thomsen, J. Vanaverbeke and P. de Wilde, 2001. The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep-Sea Res. Pt. II., 48: 3223-3243.   DOI
15 Kang, T.W., J.H. Oh, J.S. Hong and D.S. Kim, 2016. Effect of the Hebei Spirit oil spill on intertidal meiofaunal communities in Taean, Korea. Mar. Pollut. Bull., 70: 189-196.   DOI
16 Higgins, R.P. and H. Thiel, 1988. Introduction to the study of meiofauna. Smithsonnian Institution Press, Washington, D.C. London, pp. 1-488.
17 Ingels, J., A.V. Tchesunov and A. Vanreusel, 2011. Meiofauna in the Gollum channels and the Whittard Canyon, Celtic margin-How local environmental conditions shape nematode structure and function. Plos One, 6(5): 1-15.
18 Jessup, C.M., R. Kassen, S.E. Forde, B. Kerr, A. Buckling, P.B. Rainey and B.J.M. Bohannan, 2004. Big questions, small worlds: microbial model systems in ecology. Trends. Ecol. Evol., 113(1-2): 444-453.
19 Lee, K.W., J.H. Kang and H.G. Park, 2011. Effect of light intensity on survival, growth and productivity of the cyclopoid copepod Paracyclopina nana: A Laboratory study. Kor. J. Fish. Aquat. Sci., 44(6): 671-676.   DOI
20 Lee, M.R., J.A. Correa and J.C. Castilla, 2001. An assessment of the potential use of the nematode to copepod ratio in the monitoring of metals pollution. The Chanaral Case. Mar. Pollut. Bull., 42: 606-701.
21 Li, C.L., X.X. Luo, X.H. Huang and B.H. Gu, 2008. Effects of termperature, salinity, pH, and light on filtering and grazing rates of a calanoid copepod (Schmackeria dubia). Sci. World J., 8: 1219-1227.   DOI
22 Lizhe, C., F. Sujing, Y. Jie and Z. Xiping, 2012.Distribution of meiofaunal abundance in relation to environmental factors in Beibu Gulf, South China Sea. Acta. Oceanol. Sin., 31: 92-103.   DOI
23 Mascart, T., G. Lepoint and M. De Troch, 2013. Meiofauna and harpacticoid copepods in different habitats of a Mediterranean seagrass meadow. J. Mar. Biol. Assoc. U.K., 93: 1557-1566.   DOI
24 Nascimento, F.J.A., A.M.L. Karlson, J. Naslund and R. Elmgren, 2011. Diversity of larger consumers enhances interference competition effects on smaller competitors. Oecologia., 166: 337-347.   DOI
25 Mascart, T., G. Lepoint, S. Deschoemaeker, M. Binard, F. Remy and M. De Troch, 2015. Seasonal variability of meiofauna, especially harpacticoid copepods, in Posidonia oceanica macrophytodetritus accumulations. J. Sea. Res., 95: 149-160.   DOI
26 Margalef, R., 1958. Information theory in ecology. General Systems, 3: 36-71.
27 McLachlan, A., 1978. A quantitative analysis of the meiofauna and chemistry of the redox potential discontinuity zone in a sheltered sandy beach. Estuar. Coast. Shelf. Sci., 7: 275-290.   DOI
28 Nascimento, F.J.A., J. Naslund and R. Elmgren, 2012. Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol. Oceanogr., 57(1): 338-346.   DOI
29 Ngo, X.Q., N. Smol and V.A. Cah, 2013. The meiofauna distribution in correlation with environmental characteristics in 5 Mekong estuaries, Vietnam. Cah. Biol. Mar., 54: 71-83.
30 Pergent, G., J. Romero, C. Pergentmartini, M.A. Mateo and C.F. Boudouresque, 1994. Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser., 106: 139-146.   DOI
31 Piot, A., C. Nozais and P. Archambault, 2014. Meiofauna affect the macrobenthic biodiversity-ecosystem functioning relationship. Oikos., 123(2): 203-213.   DOI
32 Pusceddu, A., S. Bianchelli, J. Martin, P. Puig, A. Palanques, P. Masqued and R. Danovaro, 2014a. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc. Natl. Acad. Sci. U.S.A., 111: 8861-8866.   DOI
33 Thistle, D., 2001. Harpacticoid copepods are successful in the soft-bottom deep sea. Hydrobiologia., 453(454): 255-259.   DOI
34 Pusceddu, A., C. Gambi, C. Corinaldes, M. Scopa and R. Danovaro, 2014b. Relationships between Meiofaunal biodiversity and Prokaryotic Heterotrophic production in different tropical habitats and oceanic regions. Plos. One., 9(3): 1-17.
35 Rex, M.A., R.J. Etter, J.S. Morris, J. Crouse and C.R. McClain, 2006. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser., 317: 1-8.   DOI
36 Rowe, G., A. Lohse, F. Hubbard, G.S. Boland, E. Escobar Briones and J. Deming, 2003. Preliminary trophodynamic carbon budget for the Sigsbee deep benthos, northern Gulf of Mexico. Am. Fish. Soc. Symp., 36: 225-238.
37 Torres-Pratts, H. and N.V. Schizas, 2007. Meiofaunal colonization of decaying leaves of the red mangrove Rhizophora mangle, in Southwestern Puerto Rico. Caribb. J. Sci., 43: 127-137.   DOI
38 Wetzel, M.A., J.W. Fleeger and S.P. Powers, 2001. Effects of hypoxia and anoxia on meiofauna: A review with new data from the Gulf ofMexico. In: Rabalais N.N. and R.E. Turner (eds) Coastal hypoxia: consequences for living resources and ecosystems. Coast. Estuar. Stud., 58: 165-184.
39 Woodward, G., 2010. Integrative ecology: from molecules to ecosystems. Volume 43 advances in ecological research. Academic Press, London, pp. 1-348.
40 Zeppilli, D., J. Sarrazin, D. Leduc, P. Martinez Arbizu, D. Fontaneto and C. Fontanier, 2015. Is the meiofauna a good indicator for climate change and anthro-pogenic impacts? Mar. Biodiv., 45: 505-535.   DOI