Browse > Article
http://dx.doi.org/10.7850/jkso.2019.24.2.249

Application of Passive Sampling in Marine Environment: 2. Modified Method for Shortening of Deployment Time in a Field  

JANG, YU LEE (Department of Ocean System Engineering, Gyeongsang National University)
LEE, HYO JIN (Department of Marine Environmental Engineering, Gyeongsang National University)
JEONG, HAE JIN (Department of Ocean System Engineering, Gyeongsang National University)
KIM, GI BEUM (Department of Ocean System Engineering, Gyeongsang National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.24, no.2, 2019 , pp. 249-265 More about this Journal
Abstract
A passive sampler is one of the promising methods to easily and more accurately predict the free dissolved and bioavailable concentration ($C_{free}$) in seawater or pore water in sediments. In Europe and the United States, the use of passive samplers has been highly encouraged for more accurate marine environmental risk assessment. However, long deployment time in the field causes problems such as biofouling of the samplers, so there are few studies using passive samplers in Korea. Therefore, we review the principle and basic characteristics of the passive sampler for persistent organic pollutants, and introduce various improvement cases for the field applications of the passive sampler.
Keywords
Passive sampler; Water boundary layer; Freely dissolved and bioavailable concentration; Performance reference compounds; Equilibrium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 UNEP (United Nations Environment Programme), 2001. Final act of the plenipotentiaries on the Stockholm Convention on persistent organic pollutants; United Nations Environment Program Chemicals.
2 UNEP (United Nations Environment Programme), 2004. Guidance for a global monitoring programme for persistent organic pollutants, 1st ed.; United nations environment programme chemicals.
3 USEPA (United States Environmental Protection Agency), 2012. Guidelines for using passive samplers to monitor organic contaminants at superfund sediment sites, 32 pp.
4 USEPA (United States Environmental Protection Agency), 2017. Laboratory, field, and analytical procedures for using passive sampling in the evaluation of contaminated sediments: User's manual, 153 pp.
5 van der Wal, L., T. Jager, R.H.L.J. Fleuren, A. Barendregt, T.L. Sinnige, C.A.M. van Gestel and J.L.M. Hermens, 2004. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ. Sci. Technol., 38: 4842-4848.   DOI
6 Pintado-Herrera, M.G., P.A. Lara-Martin, E. Gonzalez-Mazo and I.J. Allan, 2016. Determination of silicone rubber and low-density polyethylene diffusion and polymer/water partition coefficients for emerging contaminants. Environ. Toxicol. Chem., 35: 2162-2172.   DOI
7 Prest, H.F., L.A. Jacobson, J.N. Huckins, 1995. Passive sampling of water and coastal air via semipermeable membrane devices. Chemosphere, 30: 1351-1361.   DOI
8 Prest, H.F., W.M. Jarman, S.A. Burns, T. Weismuller, M. Martin and J.N. Huckins, 1992. Passive water sampling via semipermeable membrane devices (SPMDs) in concert with bivalves in the Sacramento/San Joaquin river delta. Chemosphere, 25: 1811-1823.   DOI
9 Qin, Z., L. Bragg, G. Ouyang, V.H. Niri and J. Pawliszyn, 2009. Solid-phase microextraction under controlled agitation conditions for rapid on-site sampling of organic pollutants in water, J. Chromatogr. A., 1216: 6979-6985.   DOI
10 Prokes, R., B. Vrana and J. Klanova, 2012. Levels and distribution of dissolved hydrophobic organic contaminants in the Morava river in Zlin district, Czech Republic as derived from their accumulation in silicone rubber passive samplers. Environ. Pollut., 166: 157-166.   DOI
11 Rantalainen, A.L., W.J. Cretney and M.G. Ikonomou, 2000. Uptake rates of semipermeable membrane devices (SPMDs) for PCDDs, PCDFs and PCBs in water and sediment. Chemosphere, 40: 147-158.   DOI
12 Monteyne, E., P. Roose and C.R. Janssen, 2013. Application of a silicone rubber passive sampling technique for monitoring PAHs and PCBs at three Belgian coastal harbours. Chemosphere, 91: 390-398.   DOI
13 Reitsma, P.J., D. Adelman and R. Lohmann, 2013. Challenges of using polyethylene passive samplers to determine dissolved concentrations of parent and alkylated PAHs under cold and saline conditions. Environ. Sci. Technol., 47: 10429-10437.   DOI
14 Richardson, B.J., P.K.S. Lam, G.J. Zheng, K.E. McClellan and S.B. De Luca-Abbott, 2002. Biofouling confounds the uptake of trace organic contaminants by semi-permeable membrane devices (SPMDs). Mar. Pollut. Bull., 44: 1372-1379.   DOI
15 Mills, G.A., G.R. Fones, K. Booij and R. Greenwood, 2011. Passive sampling technologies. In Chemical Marine Monitoring: Policy Framework and Analytical Trends; Quevauviller, P., Roose, P., Verreet, G., Eds.; John Wiley and Sons: Chichester. 397-432 pp.
16 NOAA (National Oceanic and Atmospheric Administration), https://oceanexplorer.noaa.gov/technology/tools/spmds/spmds.html, Semipermeable Membrane Devices.
17 Moschet, C., E.L.M. Vermeirssen, R. Seiz, H. Pfefferli and J. Hollender, 2014. Picogram per liter detections of pyrethroids and organophosphates in surface waters using passive sampling. Water Res., 66: 411-422.   DOI
18 Muijs, B. and M.T.O. Jonker, 2012. Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms? Environ. Sci. Technol., 46: 937-944.   DOI
19 Muller, J.F., K. Manomanii, M.R. Mortimer and M.S. McLachlan, 2001. Partitioning of polycyclic aromatic hydrocarbons in the polyethylene/water system. Fresenius J. Anal. Chem., 371: 816-822.   DOI
20 Ossiander, L., F. Reichenberg, M.S. McLachlan and P. Mayer, 2008. Immersed solid phase microextraction to measure chemical activity of lipophilic organic contaminants in fatty tissue samples. Chemosphere, 71: 1502-1510.   DOI
21 Perron, M.M., R.M. Burgess, E.M. Suuberg, M.G. Cantwell and K.G. Pennell, 2013a. Performance of passive samplers for monitoring estuarine water column concentrations: 1. Contaminants of concern. Environ. Toxicol. Chem., 32: 2182-2189.   DOI
22 Perron, M.M., R.M. Burgess, E.M. Suuberg, M.G. Cantwell and K.G. Pennell, 2013b. Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants. Environ. Toxicol. Chem., 32: 2190-2196.   DOI
23 Kim, S.J., H.O. Kwon, M.I. Lee, Y. Seo and S.D. Choi, 2019. Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea. Environ. Sci. Pollut. Res., 26: 5831-5841.   DOI
24 Joyce, A.S., M.S. Pirogovsky, R.G. Adams, W. Lao, D. Tsukada, C.L. Cash, J.F. Haw and K.A. Maruya, 2015. Using performance reference compound-corrected polyethylene passive samplers and caged bivalves to measure hydrophobic contaminants of concern in urban coastal seawaters. Chemosphere, 127: 10-17.   DOI
25 Kim, U.J., H.Y. Kim, D. Alvarez, I.S. Lee and J.E. Oh, 2014. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples. Sci. Total Environ., 470-471: 1537-1544.   DOI
26 Kim, U.J., C.D. Seo, T.H. Im and J.E. Oh, 2015. Application assessment of passive sampling to monitor polybrominated diphenyl ethers in water environment as alternative sampling method for grab sampling. J. Korean Soc. Environ. Eng., 37: 45-51.   DOI
27 Lao, W., Y. Hong, D. Tsukada, K.A. Maruya and J. Gan, 2016. A new film-based passive sampler for moderately hydrophobic organic compounds. Environ. Sci. Technol., 50: 13470-13476.   DOI
28 ITRC (Interstate Technology & Regulatory Council), 2011. Incorporating bioavailability considerations into the evaluation of contaminated sediment sites, 162 pp.
29 Liu, H.H., L.J. Bao, K. Zhang, S.P. Xu, F.C. Wu and E.Y. Zeng, 2013. Novel passive sampling device for measuring sediment-water diffusion fluxes of hydrophobic organic chemicals. Environ. Sci. Technol., 47: 9866-9873.   DOI
30 Huckins, J.N., J.D. Petty and K. Booij, 2006. Monitors of organic chemicals in the environment. In: Semipermeable membrane devices. Springer, New York.
31 Jahnke, A., P. Mayer and M.S. McLachlan, 2012. Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in Baltic Sea sediment. Environ. Sci. Technol., 46: 10114-10122.   DOI
32 Jalalizadeh, M. and U. Ghosh, 2016. In situ passive sampling of sediment porewater enhanced by periodic vibration. Environ. Sci. Technol., 50: 8741-8749.   DOI
33 Jonker, M.T.O. and A.A. Koelmans, 2001. Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ. Sci. Technol., 35: 3742-3748.   DOI
34 Jonker, M.T.O. and A.A. Koelmans, 2002. Extraction of polycyclic aromatic hydrocarbons from soot and sediment: Solvent evaluation and implications for sorption mechanism. Environ. Sci. Technol., 36: 4107-4113.   DOI
35 Hawthorne, S.B., M.T.O. Jonker, S.A. van der Heijden, C.B. Grabanski, N.A. Azzolina and D.J. Miller, 2011. Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with polyoxymethylene. Anal. Chem., 83: 6754-6761.   DOI
36 Jonker, M.T.O., S.A. van der Heijden, D. Adelman, J.N. Apell, R.M. Burgess, Y. Choi, L.A. Fernandez, G.M. Flavetta, U. Ghosh, P.M. Gschwend, S.E. Hale, M. Jalalizadeh, M. Khairy, M.A. Lampi, W. Lao, R. Lohmann, M.J. Lydy, K.A. Maruya, S.A. Nutile, A.M.P. Oen, M.I. Rakowska, D. Reible, T.P. Rusina, F. Smedes and Y. Wu, 2018. Advancing the use of passive sampling in risk assessment and management of sediments contaminated with hydrophobic organic chemicals: Results of an international ex situ passive sampling interlaboratory comparison. Environ. Sci. Technol., 52: 3574-3582.   DOI
37 Gschwend, P.M., J.K. MacFarlane, D.D. Relble, X. Lu, S.B. Hawthorne, D.V. Nakles and T. Thompson, 2011. Comparison of polymeric samplers for accurately assessing PCBs in pore waters. Environ. Toxicol. Chem., 30: 1288-1296.   DOI
38 Gustafsson, O., F. Haghseta, C. Chan, J. MacFarlane and P.M. Gschwend, 1996. Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability. Environ. Sci. Technol., 31: 203-209.   DOI
39 Heo, J. and G. Lee, 2014. Field-measured uptake rates of PCDDs/Fs and dl-PCBs using PUF-disk passive air samplers in Gyeonggi-do, South Korea. Sci. Total Environ., 491-492: 42-50.   DOI
40 Huckins, J.N., J.D. Petty, C.E. Orazio, J.A. Lebo, R.C. Clark, V.L. Gibson, W.R. Gala and K.R. Echols, 1999. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water. Environ. Sci. Technol., 33: 3918-3923.   DOI
41 Huckins, J.N., J.D. Petty, J.A. Lebo, F.V. Almeida, K. Booij, D.A. Alvarez, W.L. Cranor, R.C. Clark and B.B. Mogensen, 2002. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membreane devices. Environ. Sci. Technol., 36: 85-91.   DOI
42 Cornelissen, G., G. Okkenhaug, G.D. Breedveld and J.E. Sorlie, 2009. Transport of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in a landfill: A novel equilibrium passive sampler to determine free and total dissolved concentrations in leachate water. J. Hydrol., 369: 253-259.   DOI
43 Di Toro, D.M., C.S. Zarba, D.J. Hansen, W.J. Berry, R.C. Swartz, C.E. Cowan, S.P. Pavlou, H.E. Allen, N.A. Thomas and P.R. Paquin, 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem., 10: 1541-1583.   DOI
44 Endo, S., Y. Yabuki and S. Tanaka, 2017. Comparing polyethylene and polyoxymethylene passive samplers for measuring sediment porewater concentrations of polychlorinated biphenyls: Mutual validation and possible correction by polymer-polymer partition experiment. Chemosphere, 184: 358-365.   DOI
45 Huckins, J.N., M.W. Tubergen and G.K. Manuweera, 1990. Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere, 20: 533-552.   DOI
46 Sacks, V.P. and R. Lohmann, 2012. Freely dissolved PBDEs in water and porewater of an urban estuary. Environ. Pollut., 162: 287-293.   DOI
47 You, J., P.F. Landrum and M.J. Lydy, 2006. Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ. Sci. Technol., 40: 6348-6353.   DOI
48 Zeng, E.Y., D. Tsukada and D.W. Diehl, 2004. Development of a solid-phase microextraction-based method for sampling of persistent chlorinated hydrocarbons in an urbanized coastal environment. Environ. Sci. Technol., 38: 5737-5743.   DOI
49 Rusina, T.P., F. Smedes, M. Koblizkova and J. Klanova, 2010. Calibration of silicone rubber passive samplers: experimental and modeled relations between sampling rate and compound properties. Environ. Sci. Technol., 44: 362-367.   DOI
50 Smedes, F., 1994. Sampling and partition of neutral organic contaminants in surface waters with regard to legislation, environmental quality and flux estimations. Int. J. Environ. Anal. Chem., 57: 215-29.   DOI
51 Smedes, F., 2007. Monitoring of chlorinated biphenyls and polycyclic aromatic hydrocarbons by passive sampling in concert with deployed mussels. In passive sampling techniques in environmental monitoring, Ch. 19. Ed. by R. Greenwood, R., Mills, G.A., Vrana, B., Elsevier, Amsterdam.
52 McDonough, K.M., N.A. Azzolina, S.B. Hawthorne, D.V. Nakles and E.F. Neuhauser, 2010. An evaluation of the ability of chemical measurements to predict polycyclic aromatic hydrocarbon-contaminated sediment toxicity to Hyalella zateca. Environ. Toxicol. Chem., 29: 1545-1550.   DOI
53 Maruya, K.A., W. Lao, D. Tsukada and D.W. Diehl, 2015. A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: Comparing freely-dissolved concentration with bioaccumulation. Chemosphere, 137: 192-197.   DOI
54 Mayer, P., W.H.J. Vaes, F. Wijnker, K.C.H.M. Legierse, R.H. Kraaij, J. Tolls and J.L.M. Hermens, 2000. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ. Sci. Technol., 34: 5177-5183.   DOI
55 Mayer, P., T.F. Parkerton, R.G. Adams, J.G. Cargill, J. Gan, T. Gouin, P.M. Gschwend, S.B. Hawthorne, P. Helm, G. Witt, J. You and B.I. Escher, 2014. Passive sampling in contaminated sediment assessment: Scientific rationale supporting use of freely dissolved concentrations. Integr. Environ. Assess. Manag., 10: 197-209.   DOI
56 Lohmann, R., 2012. Critical review of low-density polyethylene's partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environ. Sci. Technol., 46: 606-618.   DOI
57 McDonough, C.A., A.O. De Silva, C. Sun, A. Cabrerizo, D. Adelman, T. Soltwedel, E. Bauerfeind, D.C.G. Muir and R. Lohmann, 2018. Dissolved organophosphate esters and polybrominated diphenyl ethers in remote marine environments: arctic surface water distributions and net transport through fram strait. Environ. Sci. Technol., 52: 6208-6216.   DOI
58 Miege, C., N. Mazzella, I. Allan, V. Dulio, F. Smedes, C. Tixier, E. Vermeirssen, J. Brant, S. O'Toole, H. Budzinski, J.P. Ghestem, P.F. Staub, S. Lardy-Fontan, J.L. Gonzalez, M. Coquery and B. Vrana. 2015. Position paper on passive sampling techniques for the monitoring of contaminants in the aquatic environment-Achievements to date and perspectives. Trends Environ. Anal. Chem., 8: 20-26.   DOI
59 Liu, H.H., L.J. Bao and E.Y. Zeng, 2014. Recent advances in the field measurement of the diffusion flux of hydrophobic organic chemicals at the sediment-water interface. Trends Anal. Chem., 54: 56-64.   DOI
60 Lohmann, R., J.K. Macfarlane and P.M. Gschwend, 2005. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbor sediments. Environ. Sci. Technol., 39: 141-148.   DOI
61 Lohmann, R., K. Booij, F. Smedes and B. Vrana, 2012a. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water. Environ. Sci. Pollut. Res., 19: 1885-1895.   DOI
62 Lohmann, R., J. Klanova, P. Kukucka, S. Yonis and K. Bollinger, 2012b. PCBs and OCPs on a West-to-East transect: The importance of major current and net volatilization for PCBs in the Atlantic Ocean. Environ. Sci. Technol., 46: 10471-10479.   DOI
63 Fernandez, L.A., W. Lao, K.A. Maruya and R.M. Burgess, 2014. Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes Shelf Superfund Site using polymeric passive samplers. Environ. Sci. Technol., 48: 3925-3934   DOI
64 Lu, X., A. Skwarski, B. Drake and D.D. Reible, 2011. Predicting bioavailability of PAHs and PCBs with porewater concentrations measured by solid-phase microextraction fibers. Environ. Toxicol. Chem., 30: 1109-1116.   DOI
65 Martin, A., C. Margoum, J. Randon and M. Coquery, 2016. Silicone rubber selection for passive sampling of pesticides in water. Talanta, 160: 306-313.   DOI
66 Martinez, A., C. O'Sullivan, D. Reible and K.C. Hornbuckle, 2013. Sediment pore water distribution coefficients of PCB congeners in enriched black carbon sediment. Environ. Pollut., 182: 357-363.   DOI
67 Lao, W., K.A. Maruya and D. Tsukada, 2019. An exponential model based new approach for correcting aqueous concentrations of hydrophobic organic chemicals measured by polyethylene passive samplers. Sci. Total Environ., 646: 11-18.   DOI
68 Lefkovitz, L., E. Crecelius and N. McElroy, 1996. Poster presented at the 17th Annual Meeting of the Society of Environmental Toxicology and Chemistry, 17-21 November, Washington. DC, USA.
69 Jonker, M.T.O., S.A. van der Heijden, M. Kotte and F. Smedes, 2015. Quantifying the effects of temperature and salinity on partitioning of hydrophobic organic chemicals to silicone rubber passive samplers. Environ. Sci. Technol., 49: 6791-6799.   DOI
70 Fernandez, L.A., W. Lao, K.A. Maruya, C. White and R.M. Burgess, 2012. Passive sampling to measure baseline dissolved persistent organic pollutant concentrations in the water column of the Palos Verdes Shelf Superfund site. Environ. Sci. Technol., 46: 11937-11947.   DOI
71 Ghosh, U., S.K. Driscoll, R.M. Burgess, M.T.O. Jonker, D. Reible, F. Gobas, Y. Choi, S.E. Apitz, K.A. Maruya, W.R. Gala, M. Mortimer and C. Beegan, 2014. Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr. Environ. Assess. Manag., 10: 210-223.   DOI
72 Booij, K., H.E. Hofmans, C.V. Fischer and E.M. Van Weerlee, 2003. Temperature-dependent uptake rate of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ. Sci. Technol., 37: 361-366.   DOI
73 Booij, K., R. van Bommel, K.C. Jones and J.L. Barber, 2007. Air-water distribution of hexachlorobenzene and 4,4′ -DDE along a North-South Atlantic transect. Mar. Pollut. Bull., 54: 814-819.   DOI
74 Booij, K., C.D. Robinson, R.M. Burgess, P. Mayer, C.A. Roberts, L. Ahrens, I.J. Allan, J. Brant, L. Jones, U.R. Kraus, M.M. Larsen, P. Lepom, J. Petersen, D. Profrock, P. Roose, S. Schafer, F. Smedes, C. Tixier, K. Vorkamp and P. Whitehouse, 2016. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment. Environ. Sci. Technol., 50: 3-17.   DOI
75 Accardi-Dey, A.M. and P.M. Gschwend, 2002. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ. Sci. Technol., 36: 21-29.   DOI
76 Booij, K., B.N. Zegers and J.P. Boon, 2002b. Levels of some polybrominated diphenyl ether (PBDE) flame retardants along the Dutch coast as derived from their accmulation in SPMDs and blue mussels. Chemosphere, 46: 683-688.   DOI
77 Anderson, K.A., D. Sethajintanin, G. Sower and L. Quarles, 2008. Field trial and modeling of uptake rates of in situ lipid-free polyethylene membrane passive sampler. Environ. Sci. Technol., 42: 4486-4493.   DOI
78 Apell, J.N. and P.M. Gschwend, 2014. Validating the Use of Performance Reference Compounds in Passive Samplers to Assess Porewater Concentrations in Sediment Beds. Environ. Sci. Technol., 48: 10301-10307.   DOI
79 Adams, R.G., R. Lohmann, L.A. Fernandez, J.K. MacFarlane and P.M. Gschwend, 2007. Polyethylene Devices: Passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environ. Sci. Technol., 41: 1317-1323.   DOI
80 Ahrens, L., A. Daneshvar, A.E. Lau and J. Kreuger, 2015. Characterization of five passive sampling devices for monitoring of pesticides in water. J. Chromatogr. A., 1405: 1-11.   DOI
81 Witt, G., S.C. Lang, D. Ulmann, G. Schaffrath, D. Schulz-Bull and P. Mayer, 2013. Passive equilibrium sampler for in situ measurements of freely dissolved concentrations of hydrophobic organic chemicals in sediments. Environ. Sci. Technol., 47: 7830-7839.   DOI
82 Allan, I.J., H.C. Nilsson, I. Tjensvoll, C. Bradshaw and K. Naes, 2011. Mobile passive samplers: Concept for a novel mode of exposure. Environ. Pollut., 159: 2393-2397.   DOI
83 Allan, I.J., A. Ruus, M.T. Schaanning, K.J. Macrae and K. Naes, 2012. Measuring nonpolar organic contaminant partitioning in three Norwegian sediments using polyethylene passive samplers. Sci. Total Environ., 423: 125-131.   DOI
84 Booij, K., F. Smedes and E.M. Van Weerle, 2002a. Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere, 46: 1157-1161.   DOI
85 An, J.G., W.J. Shim, S.Y. Ha and U.H. Kim, 2014. Determination of petroleum aromatic hydrocarbons in seawater using headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. J. Korean Soc. Mar. Environ. Energy, 17: 27-35.   DOI
86 Allan, I.J., C. Harman, S.B. Ranneklev, K.V. Thomas and M. Grung, 2013. Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water. Environ. Toxicol. Chem., 32: 1718-1726.   DOI
87 Zhang, X., K.D. Oakes, S. Cui, L. Bragg, M.R. Servos and J. Pawliszyn, 2010. Tissue-specific in vivo bioconcentration of pharmaceuticals in rainbow trout (oncorhynchus mykiss) using space-resolved solid-phase microextraction. Environ. Sci. Technol., 44: 3417-3422.   DOI
88 Vrana, B. and G. Schuurmann, 2002. Calibrationg the uptake kinetics of semipermeable membrane devices in water: Impact of hydrodynamics. Environ. Sci. Technol., 36: 290-296.   DOI
89 Vrana, B., I.j. Allan, R. Greenwood, G.A. Mills, E. Dominiak, K. Svensson, J. Knutsson and G. Morrison, 2005. Passive sampling techniques for monitoring pollutants in water. Trends Anal. Chem., 24: 845-868.   DOI
90 Vrana, B., F. Smedes, T. Rusina, K. Okonski, I. Allan, M. Grung, K. Hilscherova, J. Novak, P. Tarabek and J. Slobodnik, 2015. 29 passive sampling: chemical analysis and toxicological profiling. 304-315 pp.
91 Xu, C., J. Wang, J. Richards, T. Xu, W. Liu and J. Gan, 2018. Development of film-based passive samplers for in situ monitoring of trace levels of pyrethroids in sediment. Environ. Pollut., 242: 1684-1692.   DOI
92 Yates, K., P. Pollard, L. Davies, L. Webster and C. Moffat, 2013. Silicone rubber passive samplers for measuring pore water and exchangeable concentrations of polycyclic aromatic hydrocarbons concentrations in sediments. Sci. Total Environ., 463-464: 988-996.   DOI
93 Cornelissen, G., A. Pettersen, D. Broman, P. Mayer and G.D. Breedveld, 2008b. Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations. Environ. Toxicol. Chem., 27: 499-508.   DOI
94 Borrelli, R., A.P. Tcaciuc, I. Verginelli, R. Baciocchi, L. Guzzella, P. Cesti, L. Zaninetta and P.M. Gschwend, 2018. Performance of passive sampling with low-density polyethylene membranes for the estimation of freely dissolved DDx concentrations in lake environments. Chemosphere, 200: 227-236.   DOI
95 Choi S.D, S.Y. Beak and Y.S. Chang, 2009. Passive air sampling of persistent organic pollutants in Korea. Toxicol. Environ. Health. Sci. 1: 75-82.   DOI
96 Cornelissen, G., K. Wiberg, D. Broman, H.P.H. Arp, Y. Persson, K. Sundqvist and P. Jonsson, 2008a. Freely dissolved concentrations and sediment-water activity ratios of PCDD/Fs and PCBs in the open Baltic Sea. Environ. Sci. Technol., 42: 8733-8739.   DOI
97 Apell, J.N., A.P. Tcaciuc and P.M. Gschwend, 2016a. Understanding the rates of nonpolar organic chemical accumulation into passive samplers deployed in the environment: Guidance for passive sampler deployments. Integr. Environ. Assess. Manag., 12: 486-492.   DOI
98 Apell, J.N. and P.M. Gschwend, 2016b. In situ passive sampling of sediments in the Lower Duwamish Waterway Superfund site: Replicability, comparison with ex situ measurements, and use of data. Environ. Pollut., 218: 95-101.   DOI
99 Bao, L.J., S.P. Xu, Y. Liang and E.Y. Zeng, 2012. Development of a low-density polyethylene-containing passive sampler for measuring dissolved hydrophobic organic compounds in open waters. Environ. Toxicol. Chem., 31: 1012-1018.   DOI
100 Bao, L.J. and E.Y. Zeng, 2014. Field application of passive sampling techniques for sensing hydrophobic organic contaminants. Trends Environ. Anal. Chem., 1: 19-24.   DOI