Browse > Article
http://dx.doi.org/10.7850/jkso.2015.20.3.151

Semi-daily Variations in Populations of the Dinoflagellates Dinophysis acuminata and Oxyphysis oxytoxoides and a Mixotrophic Ciliate Prey Mesodinium rubrum in Masan Bay  

KIM, SUNJU (Research Institute for Basic Science, Chonnam National University)
YOON, JIHAE (LOHABE, Department of Oceanography, Chonnam National University)
KIM, MIRAN (LOHABE, Department of Oceanography, Chonnam National University)
PARK, MYUNG GIL (LOHABE, Department of Oceanography, Chonnam National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.20, no.3, 2015 , pp. 151-157 More about this Journal
Abstract
Recent laboratory studies have documented that mixotrophic dinoflagellates Dinophysis spp. and heterotrophic dinoflagellate Oxyphysis oxytoxoides share a common prey, i.e. the mixotrophic ciliate Mesodinium rubrum. Nonetheless, very little is known about the population dynamics and species interactions among these protists in natural environments. To investigate the interactions between the dinoflagellate predators and their ciliate prey in the field, we took the samples twice a day from 26 July to 28 August, 2011 at a fixed station in Masan Bay and analyzed their abundances. During this study, salinity was highly variable, ranging from 5 to 28, due to the periodic input of rainfalls to the sampling station. Water temperature was on average $26.5^{\circ}C$ until 20 August and thereafter was about $21^{\circ}C$ by the end of the sampling period. The ciliate M. rubrum occurred persistently throughout the sampling period, ranging from 13 to $492\;cells\;mL^{-1}$. Cell densities of D. acuminata and O. oxytoxoides ranged from undetectable level to $19,833\;cells\;L^{-1}$ and from undetectable level to $100,333\;cells\;L^{-1}$, respectively. The high abundance of D. acuminata mostly followed the blooming of the ciliate M. rubrum, but it often did not peak even during heavy blooms of the prey, probably due to sensitivity to large salinity fluctuation and also presumably overlapped grazing by other mixotrophic dinoflagellates. The abundance of O. oxytoxoides was detected only when water temperature was lower than $24^{\circ}C$, indicating that water temperature is an important environmental factor to control the population dynamics of the dinoflagellate species.
Keywords
mixotrophy; food chain; biological interaction; feeding;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Fensome, R.A., F.J.R. Taylor, G. Norris, W.A.S. Sarjeant, D.I. Wharton and G.L. Williams, 1993. A Classification of Living and Fossil Dinoflagellates. Micropaleontology Special Pub 7, Sheridan Press, Hanover, Pennsylvania, USA
2 Garcia-Cuetos, L., O. Moestrup, P. J. Hansen and N. Daugbjerg, 2010. The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts. Harmful Algae, 9: 25-38.   DOI   ScienceOn
3 Hackett, J. D., L. Maranda, H.S. Yoon and D. Bhattacharya, 2003. Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J. Phycol., 39: 440-448.   DOI   ScienceOn
4 Inoue, H., Y. Fukuyo and Y. Nimura, 1993. Feeding behavior of dinoflagellate, Oxyphysis oxytoxoides, on ciliates. Bull. Plankton Soc. Japan, 40: 9-17.
5 Jacobson, D.M. and R.A. Andersen, 1994. The discovery of mixotrophy in photosynthetic species of Dinophysis (Dinophyceae): light and electron microscopical observations of food vacuoles in Dinophysis acuminata, D. norvegica and two heterotrophic dinophysoid dinoflagellates. Phycologia, 33: 97-110.   DOI
6 Janson, S and E. Graneli, 2003. Genetic analysis of the psbA gene from single cells indicates a cryptomonad origin of the plastid in Dinophysis (Dinophyceae). Phycologia, 42: 473-477.   DOI
7 Jeong, H.J., Y.D. Yoo, K.H. Lee, T.H. Kim, K.A. Seong, N.S. kang, S.Y. Lee, J.S. Kim, S. Kim and W.H. Yih, 2013. Red tides in Masan Bay, Korea in 2004-2005: I. daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae, 30S: S75-S88.
8 Kamiyama, T. and T. Suzuki, 2009. Production of dinophysistoxin-1 and pectenotoxin-2 by a culture of Dinophysis acuminata (Dinophyceae). Harmful Algae, 8: 312-317.   DOI   ScienceOn
9 Kim, H.S., Y.G. Kim, J.S. Yang and W. Yih, 2004. Comparative population dynamics of photosynthetic ciliate Mesodinium rubrum (=Myrionecta rubra) in Gomso Bay and the Geum River estuary, Korea. J. Kor. Soc. Ocean., The Sea, 9: 164-172.
10 Kim, M., S.W. Nam, W. Shin, D.W. Coats and M.G. Park, 2012. Dinophysis caudata (Dinophyceae) sequesters and retains plastids from the mixotrophic ciliate prey Mesodinium rubrum. J. Phycol., 48: 569-579.   DOI   ScienceOn
11 Kim, S., Y.G. Kang, H.S. Kim, W. Yih, D.W. Coats and M.G. Park, 2008. Growth and grazing responses of the mixotrophic dinoflagellate Dinophysis acuminata as functions of light intensity and prey concentration. Aquat. Microb. Ecol., 51: 301-310.   DOI   ScienceOn
12 Kofoid, C.A., 1926. On Oxyphysis oxytoxoides gen. nov., sp. nov. A dinophysoid dinoflagellate convergent toward the peridinioid type. Univ. Calif. Publ. Zool., 28(10): 203-216.
13 Koike, K., K. Koike, M. Takagi, T. Ogata and T. Ishimaru, 2000. Evidence of phagotrophy in Dinophysis fortii (Dinophysiolaes, Dinophyceae), a dinoflagellate that causes diarrhetic shellfish poisoning (DSP). Phycol. Res., 48: 121-124.   DOI   ScienceOn
14 Nagai, S., G. Nishitani, Y. Tomaru, S. Sakiyama and T. Kamiyama, 2008. Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. J. Phycol., 44: 909-922.   DOI   ScienceOn
15 Lindholm, T., 1985. Mesodinium rubrum-a unique photosynthetic ciliate. Adv. Aquat. Microbiol., 3: 1-48.
16 Lucas, I.A.N. and M. Vesk, 1990. The fine structure of two photosynthetic species of Dinophysis (Dinophysiales, Dinophyceae). J. Phycol., 26: 345-357.   DOI
17 Maestrini, S.Y., B.R. Berland, D. Grzebyk and A.M. Spano, 1995. Dinophysis spp. cells concentrated from nature for experimental purposes, using size fractionation and reverse migration. Aquat. Microb. Ecol., 9: 177-182.   DOI
18 Nishitani, G, S. Nagai, S. Sakiyama and T. Kamiyama, 2008. Successful cultivation of the toxic dinoflagellate Dinophysis caudata (Dinophyceae). Plankton Benthos Res., 3: 78-85.   DOI
19 Nishitani, G., K. Miyamura and I. Imai, 2003. Trying to cultivation of Dinophysis caudata (Dinophyceae) and the appearance of small cells. Plankton Biol. Ecol., 50: 31-36.
20 Park, M.G., H. Lee and S. Kim, 2011. Feeding behavior, spatial distribution and phylogenatic affinities of the heterotrophic dinoflagellate Oxyphysis oxytoxoides. Aquat. Microb. Ecol., 62: 279-287.   DOI   ScienceOn
21 Park, M.G., J.S. Park, M. Kim and W. Yih, 2008. Plastid dynamics during survival of Dinophysis caudata without its ciliate prey. J. Phycol., 44: 1154-1163.   DOI   ScienceOn
22 Park, M.G., M. Kim, S. Kim and W. Yih, 2010. Does Dinophysis caudata (Dinophyceae) have permanent plastids? J. Phycol., 46: 236-242.   DOI   ScienceOn
23 Reguera, B., P. Riobo, F. Rodriguez, P.A. Diaz, G. Pizarro, B. Paz, J.M. Franco and J. Blanco, 2014. Dinophysis toxins: causative organisms, distribution and fate in shellfish. Mar. Drugs, 12: 394-461.   DOI
24 Park, M.G., S. Kim, E.-Y. Shin, W. Yih and D.W. Coats, 2013. Parasitism of harmful dinoflagellates in Korean coastal waters. Harmful Algae, 30S: S62-S74.
25 Park, M.G., S. Kim, H.S. Kim, G. Myung, Y.G. Kang and W. Yih, 2006. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol., 45: 101-106.   DOI   ScienceOn
26 Reguera, B., L. Velo-Suarez, R. Raine, R and M.G. Park, 2012. Harmful Dinophysis species: A review. Harmful Algae, 14: 87-106.   DOI   ScienceOn
27 Riisgaard, K. and P.J. Hansen, 2009. Role of food uptake for photosynthesis, growth and survival of the mixotrophic dinoflagellate Dinophysis acuminata. Mar. Ecol. Prog. Ser., 381: 51-62.   DOI
28 Sampayo, M.A. de M., 1993. Trying to cultivate Dinophysis spp. In: Smayda TJ, Shimizu Y (eds) Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam, p807-810
29 Schnepf, E. and M. Elbrachter, 1988. Cryptophycean-like double membrane-bound chloroplast in the dinoflagellate, Dinophysis Ehrenb.: evolutionary, phylogenetic and toxicological implications. Bot. Acta., 101: 196-203.   DOI
30 Sjoqvist, C.O. and T.J. Lindholm, 2011. Natural co-occurrence of Dinophysis acuminata (Dinoflagellata) and Mesodinium rubrum (Ciliophora) in thin layers in a coastal inlet. J. Eukaryot. Microbiol., 58(4): 365-372.   DOI   ScienceOn
31 Swanson, K.M., L.J. Flewelling, M. Byrd, A. Nunez and T.A. Villareal, 2010. The 2008 Texas Dinophysis ovum bloom: distribution and toxicity. Harmful Algae, 9: 190-199.   DOI   ScienceOn
32 Yih, W., H.S. Kim, G. Myung, J.W. Park, Y.D. Yoo and H.J. Jeong, 2013. The red-tide ciliate Mesodinium rubrum in Korean coastal waters. Harmful Algae, 30S: S53−S61.
33 Takishita, K., K. Koike, T. Maruyama and T. Ogata, 2002. Molecular evidence for plastid robbery (kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning. Protist, 153: 293-302.   DOI   ScienceOn
34 Whyte, C., S. Swan and K. Davidson, 2014. Changing wind pattern linked to unusually high Dinophysis blooms around the Shetland Islands, Scotland. Harmful Algae, 39: 365-373.   DOI   ScienceOn
35 Yih, W., G. Myung, H.S. Kim and H.J. Jeong, 2005. Semiweekly variation of spring population of a mixotrophic ciliate Myrionecta rubra (=Mesodinium rubrum) in Keum River estuary, Korea. Algae, 20: 207-216.   DOI   ScienceOn