Browse > Article
http://dx.doi.org/10.7850/jkso.2015.20.3.141

Occurrence and Molecular Phylogenetic Characteristics of Benthic Sand-dwelling Dinoflagellates in the Intertidal Flat of Dongho, West Coast of Korea  

KIM, SUNJU (Research Institute for Basic Science, Chonnam National University)
YOON, JIHAE (LOHABE, Department of Oceanography, Chonnam National University)
PARK, MYUNG GIL (LOHABE, Department of Oceanography, Chonnam National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.20, no.3, 2015 , pp. 141-150 More about this Journal
Abstract
Dinoflagellates are ubiquitous and important primary producers in the oceans. They have diverse trophic modes, i.e., phototrophic, heterotrophic, and mixotrophic modes and thereby, play important ecological role in marine microbial food-web. While many studies have been focused on planktonic dinoflagellates in pelagic ecosystems, benthic, sand-dwelling dinoflagellates that inhabit in intertidal zone have been very poorly documented worldwide. We investigated biodiversity, occurrence, and molecular phylogeny of benthic, sand-dwelling dinoflagellates from the intertidal flat of Dongho, west coast of Korea during low-tide, monthly from November 2012 to February 2014. About 27 species of 13 genera in orders Gonyaulacales, Gymnodiniales, Peridiniales, Prorocentrales have been identified, of which members in the genus Amphidinium constituted a major part of the sand-dwelling dinoflagellates in this area. A total of 34 isolates from 16 species of the sand-dwelling dinoflagellates were isolated from Dongho, Mohang, Gamami, and Songho in the west coast and Hyupjae in Jeju of Korea, their 28S rDNA sequences were successfully amplified, and applied for molecular phylogenetic analyses. In the 28S rDNA phylogeny, Amphidinium species diverged across three major clusters within the order Gymnodiniales and formed polyphyletic group. Based on the unambiguously aligned partial 28S rDNA sequences including variable D2 region, the genotypes of Amphidinium mootonorum Korean strains greatly differed from that of Canadian strain with 19.2% of pairwise nucleotide difference, suggesting that further ultrastructural studies may provide additional characters to clearly separate these genotypes. Two potential toxic species, Amphidinium carterae and A. operculatum appeared occasionally during this study. Quantitative assessment and toxicity of those species should be addressed in the future.
Keywords
Benthic dinoflagellates; intertidal flat; 28S ribosomal DNA; molecular phylogeny; sand-dwelling dinoflagellates; seasonal occurrence;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Al-Qassab, S., W.J. Lee, S. Murray, A.G.B. Simpson and D.J. Patterson, 2002. Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozool., 41: 91-144.
2 Baek, S.H., 2012. First report for appearance and distribution patterns of the epiphytic dinoflagellates in the Korean peninsula. Korean J. Environ. Biol., 30(4): 355-361.   DOI   ScienceOn
3 Daugbjerg, N. G. Hansen, J. Larsen and O. Moestrup, 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia, 39: 302-17.   DOI
4 Dodge, J.D., 1982. Marine Dinoflagellates of the British Isles. Her Majesty's. Stationary Office, London, 303 pp.
5 Dragesco, J., 1965. Etude cytologie de quelques flagelles mesopsammiques. Cah. Biol. Mar., 6: 83-115.
6 Jorgensen, M.F., S. Murray, N. Daugbjerg, 2004a. Amphidinium revisited. I. redefinition of Amphidinium (Dinophyceae) based on cladistic and molecular phylogenetic analyses. J. Phycol., 40: 351-365.   DOI   ScienceOn
7 Jorgensen, M.F., S. Murray and N. Daugbjerg, 2004b. A new genus of athecate interstitial dinoflagellates, Togula gen. nov., previously encompassed within Amphidinium sensu lato: Inferred from light and electron microscopy and phylogenetic analyses of partial large subunit ribosomal DNA sequences. Phycological Research, 52: 284-299.   DOI
8 Herdman, E.C., 1924. Notes on dinoflagellates and other organisms causing discolouration of the sand of Port Erin. IV. Proc. Trans. Liverpool Biol. Soc., 38: 58-63.
9 Hoppenrath, M., 2000. Taxonomische und ökologische Untersuchungen von Flagellaten mariner Sande. PhD Thesis, Department of Biology, University of Hamburg, Hamburg, 311 pp.
10 Hoppenrath, M. and B.S. Leander, 2007. Morphology and phylogeny of the pseudocolonial dinoflagellates Polykrikos lebourae and Polykrikos herdmanae n. sp. Protist, 158: 209-227.   DOI   ScienceOn
11 Hoppenrath, M., R.P.T. Koeman and B.S. Leander, 2009. Morphology and taxonomy of a new marine sand-dwelling Amphidiniopsis species (Dinophyceae, Peridiniales), A. aculeata sp. nov., from Cap Feret, France. Mar. Biodiv., 39: 1-7.   DOI
12 Horiguchi, T., J. Yoshizwa-Ebata and T. Nakayama, 2010. Halostylodinium arenarium, gen. et sp. nov. (Dinophyceae), a coccoid sand-dwelling dinoflagellate from subtropical Japan. J. Phycol., 36: 960-971.
13 Keeling, P.J., J.M. Archibald, N.M. Fast, J.D. Palmer, 2004, Comment on "The Evolution of Modern Eukaryotic Phytoplankton", Science, 306(5705): 2191.
14 Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120.   DOI
15 Kim, H.S., W. Yih, J.H. Kim, G. Myung and H.J. Jeong, 2011. Abundance of epiphytic dinoflagellates from coastal waters off Jeju Island, Korea during autumn 2009. Ocean Sci. J., 46: 205-209.   DOI
16 Kim, S. and M.G. Park, 2014. Amoebophrya spp. from the Bloomforming Dinoflagellate Cochlodinium polykrikoides: Parasites Not Nested in the "Amoebophrya ceratii Complex", J. Euk. Mic., 61: 173-181.   DOI   ScienceOn
17 Kim, S., J. Yoon and M.G. Park, 2015. Obligate mixotrophy of the pigmented dinoflagellate Polykrikos lebourae (Dinophyceae, Dinoflagellata). Algae, 30(1): 35-47.   DOI   ScienceOn
18 Kofoid, C.A., and O. Swezy, 1921. The free-living unarmoured Dinoflagellata. Mem. University Calif., 5: 1-562.
19 Lebour, M.V., 1925. The Dinoflagellates of Northern Seas. Marine Biological Association of the UK, Plymouth.
20 Larkin, M., G. Blackshields, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T. J. Gibson, D. G. Higgins, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T. J. Gibson and D. G. Higgins, 2007. Clustal W and Clustal X version 2.0 Bioinformatics, 23: 2947-2948.   DOI   ScienceOn
21 Larsen, J., 1985. Algal studies of the Danish Wadden Sea II. A taxonomic study of psammobious dinoflagellates. Opera Bot., 79: 14-37.
22 Larsen, J. and D.J. Patterson, 1990. Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist., 24: 801-937.   DOI   ScienceOn
23 Nunn, G.B., B.F. Theisen, B. Christensen and P. Arctander, 1996. Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J. Mol. Evol., 42: 211-23.   DOI
24 Lee, W.J. and D.J. Patterson, 2002. Abundance and biomass of heterotrophic flagellates, and factors controlling their abundance and distribution in sediments of Botany bay. Microbial Ecol., 43: 467-81.   DOI   ScienceOn
25 Maddison, W.P. and P.R. Maddison, 2000. MacClade version 4: Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts, USA.
26 Murray, S., M.F. Jorgensen, N. Daugbjerg, and L. Rhodes, 2004. Amphidinium revisited. II. Resolving species boundaries in the Amphidinium operculatum species complex (Dinophyceae), including the descriptions of Amphidinium trulla sp. nov. & Amphidinium gibbosum comb. nov. J. Phycol., 40: 366-82.   DOI   ScienceOn
27 Park, M.G., M. Kim and S. Kim, 2014. The acquisition of plastids/phototrophy in heterotrophic dinoflagellates. Acta Protozool., 53: 39-50.
28 Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. and Huelsenbeck, J. P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol., 61: 539-42.   DOI
29 Schiller, J., 1933. Dinoflagellatae (Peridineae). Kryptogamen-Flora. Akad. Verl. Leipzig 10, 617 pp.
30 Shah, M.M.R., S.J. An, and J.B. Lee, 2014. Occurrence of sanddwelling and epiphytic dinoflagellates including potentially toxic species along the coast of Jeju Island, Korea. J. Fish. Aquat. Sci., 9(4): 141-156.   DOI
31 Yamaguchi, A., M. Hoppenrath, V. Pospelova, T. Horiguchi and B. S. Leander 2011. Molecular phylogeny of the marine sand-dwelling dinoflagellate Herdmania litoralis and an emended description of the closely related planktonic genus Archaeperidinium Jorgensen. Eur. J. Phycol., 46(2): 98-112.   DOI   ScienceOn
32 Stamatakis, A., 2014. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. BioInformatics, 30: 1312-1313.   DOI   ScienceOn
33 Swofford, D.L., 2002. PAUP*: Phylogenetic analyses using parsimony (*And Other Methods). V.4.0b10. Sinauer associates, Sunderland, Massachusetts, USA, 133 pp.