Browse > Article

High-resolution Stable Isotope Analyses of the Otolith of Argyrosomus argentatus  

Khim, Boo-Keun (Division of Earth Environmental System, Pusan National University)
Lee, Tae-Won (Department of Oceanography, Chungnam National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.13, no.1, 2008 , pp. 83-88 More about this Journal
Abstract
Using micromill, discrete carbonate powders from the otolith of Argyrosomus argentatus were sampled along the growth band, and high-resolution stable isotope profiles were obtained. The ${\delta}^{18}O$ and ${\delta}^{13}C$ values are increasing gradually from the core to the margin. However, such increases do not seem to be attributed to the environmental property changes during the growth, but to the dominant effect of metabolic carbons during the early growth, and then, the isotopic composition seems to be equilibrium to the environmental condition. This paper allows the diverse applicability of high-resolution isotope research to the fish otoliths in the future.
Keywords
Argyrosomus argentatus; Otolith; Micromill; Stable Isotope; Marine Environment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 백근욱, 허성회, 2004. 남해에 서식하는 군평선이(Hapalogenys mucronatus)의 이석사정에 의한 연령과 성장. 한국어류학회지, 16: 301-308
2 Chung, C.S., 1998. Origin of water masses and fluxes of chemical materials in the East China Sea and South Sea of Korea. Ph.D. thesis, Inha Univ., 159 pp. (in Korean)
3 Lee, T.W. and K.S. Lee, 1989. Daily growth increments and lunar pattern in otolith of the eel, Anguilla japonica, in the freshwater. Bull. Korean Fish. Soc. 22: 36-40
4 Patterson, W.P., 1998. North American continental seasonality during the last millennium: high-resolution analysis of sagittal otoliths. Palaeogeogr. Palaeoclimat. Palaeoecol. 138: 271-303   DOI   ScienceOn
5 국립수산과학원, 2005. 이석 연령 사정 기술서. 수산자원평가보고서 제9호, 131 pp.
6 Rhoads, D.C. and R. Lutz, 1980. Skeletal growth of aquatic organisms. Plenum Press, New York. 750 pp.
7 Okamura. O. (ed). 1986. Fishes of the East China Sea and the Yellow Sea. Sekai Reg. Fish. Res. Inst., 501 pp
8 Epstein, S., R. Buchsbaum, H. Lowenstam, and H.C. Urey, 1953. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 64: 1315-1326   DOI
9 Thorrold, S.R, S.E. Campana, C.M. Jones, and P.K. Swart, 1997. Factors determining ${\delta}^{13}C$ and ${\delta}^{18}O$ fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta 61: 2909-2919   DOI   ScienceOn
10 김수암, 강수경, 2001. 동해 생태계 규명을 위한 안정동위원소의 이용: 명태와 연어 이석의 경우. 한국수산자원학회지, 4: 64-72
11 문형태, 이태원, 1999. 이석의 미세구조를 이용한 가덕도 천해역 문치가자미(Limanda yokohamae) 유어의 연령과 성장. 한국어류학회지, 11: 46-51
12 Khim, B.K. and D.E. Krantz, 1996. Oxygen isotopic identity of the Delaware Coastal Current. J. Geophys. Res. 101: 16509-16514   DOI
13 Khim, B.K., K.S. Woo, and J.G. Je, 2000. Stable isotope profiles of bivalve shells: seasonal temperature variations, latitudinal temperature gradients and biological carbon cycling along the east coast of Korea. Cont. Shelf Res. 20: 843-861   DOI   ScienceOn
14 김동우, 한경남, 임양재, 2003. 황복, Takifugu obscurus의 초기성장과 이석의 미세구조. 바다, 8: 237-242
15 Wurster, C.M., W.P. Patterson, and M.M. Cheatham, 1999. Advances in micromilling techniques: A new apparatus for acquiring highresolution oxygen and carbon stable isotope values and major/ minor elemental ratios from accretionary carbonate. Comp. Geosci. 25: 1155-1162
16 Gao, Y.W., 1999. Microsampling of fish otoliths: a comparison between DM2800 and Dremel in stable isotope analysis. Environ. Biol. Fishes 55: 443-448   DOI   ScienceOn
17 Dettman, D.L. and K.C. Lohmann, 1995. Microsampling carbonates for stable isotope and minor element analysis: physical separation of samples on a 20 micrometer scale. J. Sediment. Res. 65A: 566-569
18 Emrich, K., D.H. Ehhalt, and J.C. Vogel, 1970. Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet. Sci. Lett. 8: 363-371   DOI   ScienceOn
19 Kalish, J.M., 1989. Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. J. Exp. Mar. Biol. Ecol. 132: 151-178   DOI   ScienceOn
20 Campana, S.E. and S.R. Thorrold, 2001. Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can. J. Fish. Aqu. Sci. 58: 30-38   DOI
21 Lee, T.W. and J.S. Byun, 1996. Microstructural growth in otoliths of conger eel (Conger myriaster) leptocephali during the metamorphic stage. Mar. Biol. 125: 259-268   DOI
22 Grossman, E.L. and T.L. Ku, 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol. 59: 59-74   DOI   ScienceOn
23 Radtke, R.L., W. Showers, E. Moksness, and P. Lenz, 1996. Environmental information stored in otoliths: insights from stable isotopes. Mar. Biol. 127: 161-170   DOI
24 Lee, T.W. and G.C. Kim, 2000. Microstructural growth in otoliths of black rockfish (Sebastes schlegeli) from prenatal larval to early juvenile stages. Ichthy. Res. 47: 335-341   DOI   ScienceOn
25 Wurster, C.M. and W.P. Patternson, 2001. Late Holocene climate change for the eastern interior United States: evidence from highresolution ${\delta}^{18}$O values of sagittal otoliths. Palaeogeogr. Palaeoclimat. Palaeoecol. 170: 81-100   DOI   ScienceOn
26 Beggs, G.A. and C.R. Weidman, 2001. Stable ${\delta}^{13}C$ and ${\delta}^{18}O$ isotopes in otoliths of haddock Melanogrammus aeglefinus from the Northwest Atlantic Ocean. Mar. Ecol. Prog. Ser. 216: 223-233   DOI
27 Romanek, C.S., E.L. Grossman, and J.W. Morse, 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim. Cosmochim. Acta 56: 419-430   DOI   ScienceOn
28 Lee, J.U. and Y.H. Hur, 1993. Comparative study on age determination using scales and otoliths of Walleye Pollock Theragra chalcogramma in the Bering Sea and Gulf of Alaska. Korea J. Ichthy. 5: 177-183