Browse > Article

Isotopic Determination of Food Sources of Benthic Invertebrates in Two Different Macroalgal Habitats in the Korean Coasts  

Kang, Chang-Keun (Division of Biological Sciences, Pusan National University)
Choy, Eun-Jung (Division of Biological Sciences, Pusan National University)
Song, Haeng-Seop (Division of Biological Sciences, Pusan National University)
Park, Hyun-Je (Division of Biological Sciences, Pusan National University)
Soe, In-Soo (Marine Eco-Technology Institute)
Jo, Q-Tae (East Sea Fisheries Research Institute, NFRDI)
Lee, Kun-Seop (Division of Biological Sciences, Pusan National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.12, no.4, 2007 , pp. 380-389 More about this Journal
Abstract
Stable carbon and nitrogen isotopes were analyzed in suspended particulate organic matter, macroalgae and macrobenthic invertebrates in order to determine the importance of primary organic matter sources in supporting food webs of rocky subtidal and intertidal macroalgal beds in the Korean coasts. Investigations were conducted at the inter tidal sites within Gwangyang bay, a semi-enclosed and eutrophicated bay, and the subtidal sites of the east coast, a relatively oligotrophic and open environment, in May and June 2005. Water-column suspension feeders showed more negative $\delta^{13}C$ values than those of the other feeding guilds, indicating trophic linkage with phytoplankton and thereby association with pelagic food chains. In contrast, animals of the other feeding guilds, including interface suspension feeders, herbivores, deposit feeders, omnivores and predators, displayed relatively less negative $\delta^{13}C$ values than those of the water-column suspension feeders and similar with that of macroalgae, indicating exclusive use of macroalgae-derived organic matter and association with benthic food chains. Most the macrobenthic species were considered to form strong trophic links with benthic food chains. In addition, the distribution of higher $\delta^{15}N$ values in macrobenthic consumers and macroalgae at the intertidal sites of Gwangyang Bay than those at the subtidal sites of the east coast suggests that anthropogenic nutrients may enhance the macroalgal production at the intertidal sites and in turn be incorporated into the particular littoral food web in Gwangyag Bay. These results confirm the dominant role of macroalgae in supporting rocky subtidal and intertidal food webs in the Korean coasts.
Keywords
Stable carbon and nitrogen isotope ratio; Macroalgal bed; Macrobenthic invertebrates; Trophic link; Anthropogenic nutrients;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Bligh, E.G. and W.F. Dyer, 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911-917   DOI
2 DeNiro, N.J. and S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta, 42: 495-506   DOI   ScienceOn
3 Huh S.H. and S.N. Kwak. 1998. Feeding habits of Conger myriaster in the eelgrass (Zostera marina) bed in Kwangyang Bay. J. Korean Fish. Soc., 31: 665-672
4 Jenkins, S.R. and S.J. Hawkins, 2003. Barnacle larval supply to sheltered rocky shores: a limiting factor?. Hydrobiologia, 503: 143-151   DOI   ScienceOn
5 Kwak, T.J. and J.B. Zedler, 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia, 110: 262-277   DOI
6 Minagawa, M. and E. Wada, 1984. Stepwise enrichment of $^{15}N$ along food chains: further evidence and the relation between $\delta^{15}N$ and animal age. Geochim. Cosmochim. Acta, 48: 1135-1140   DOI   ScienceOn
7 Tan, F.C., D.L. Cai and J.M. Edmond, 1991. Carbon isotope geochemistry of the Changjiang Estuary. Estuar. Coast. Shelf Sci., 32: 395-403   DOI
8 Vander Zanden, M.J, and J.B. Rasmussen, 2001. Variation in $^{15}N\;and\;^{13}C$ trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr., 46: 2061-2066   DOI   ScienceOn
9 Kerby, N.W. and J.A. Raven, 1985. Transport and fixiation of inorganic carbon by marine algae. Adv. Bot. Res., 11: 77-123
10 Focken, U. and K. Becker, 1998. Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using $\delta^{13}C$ data. Oecologia, 115: 337-343   DOI
11 Lee, K.W., C.H. Shon and S.C. Chung. 1998. Marine algal flora and grazing effect of sea urchins in the coastal waters of Cheju Island. J. of Aquaculture, 11: 401-419   과학기술학회마을
12 John, D.M., S.J. Hawkins and J.H. Price, 1992. Plant-animal intractions in the marine benthos. Clarendon Press, Oxford, 565pp
13 Lee, Y.S., C.K. Kang, Y.K. Choi and S.Y. Lee, 2007. Origin and spatial distribution of organic matter at Gwangyang Bay in the fall. J. Korean Soc. Oceanogr., 12: 1-8   과학기술학회마을
14 Cha. Y.J., E.H. Lee and D.C. Park, 1988. Studies on the processing and utilization of seaweeds. Bull. Korean Fish. Soc., 21: 42-49
15 Michener, R.H. and D.M. Schell, 1994. Stable isotope ratios as tracers in marine aquatic food webs. In: Lajtha K, Michener RH (eds) Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, Oxford, pp. 138-157
16 Huh S.H. and S.N. Kwak, 1999. Feeding habits of Acanthogobius flavimanus in the eelgrass (Zostera marina) bed in Kwangyang Bay. J. Korean Fish. Soc., 32: 10-17
17 Kang. C.-K., J.B. Kim, J.B. Kim, P.-Y. Lee and J.-S. Hong, 2001. The importance of intertidal benthic autotrophs to the Kwangyang Bay (Korea) food webs: $\delta^{13}C$ analysis. J. Korean Soc. Oceanogr., 36: 109-123   과학기술학회마을
18 Bode, A., M.T. Alvarez-Ossorio and M. Varela, 2006. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser., 318: 89-102   DOI
19 Currin, C.A., S.Y. Newell and H.W. Paerl, 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Mar. Ecol. Prog. Ser., 121: 99-116   DOI
20 Terawaki, T., H. Hasegawa, S. Arai and M. Ohno, 2001. Management-free thechniques for restoration of Eisenia and Ecklonia beds along the central Pacific coast of Japan. J. Appl. Phycol., 13: 13-17   DOI   ScienceOn
21 Goering, J., V. Alexander and N. Haubenstock, 1990. Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a North Pacific bay. Estuar. Coast. Shelf Sci., 30: 239-260   DOI
22 Fredriksen, S., 2003. Food web studies in a Norwegian kelp forest based on stable isotope $(\delta^{13}C\;and\;\delta^{15}N)$ analysis. Mar. Ecol. Prog. Ser., 260: 71-81   DOI
23 Riera, P., L.J. Stal and J. Nieuwenhuize, 2000. Heavy $\delta^{15}N$ in intertidal benthic algae and invertebrates in the Scheldt Estuary (The Netherlands): effect of riverine nitrogen inputs. Estuar. Coast. Shelf Sci., 51: 365-372   DOI   ScienceOn
24 Cha. S.S. and K.J. Park, 2001. Food organisms and feeding selectivity of postlarvae of slimy (Leiognathus nuchalis) in Kwangyang Bay, Korean. J. Korean Fish. Soc., 34: 666-671
25 Peterson, B.J. and B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Rev. Ecol. Evol. Systym., 18: 293-320   DOI   ScienceOn
26 Yatsuya, K. and H. Nakahara, 2004. Diet and stable isotope ratios of gut content and gonad of the sea urchin Anthocidaris crassispina (A. Agassiz) in two different adjacent habitats, the Sargassum area and Corallina area. Fish. Sci., 70: 285-292   DOI   ScienceOn
27 Fry, B. and E.B. Sherr, 1984. $\delta^{13}C$ measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci., 27: 13-47
28 Kang, C.K., E.J. Choy, S.K. Paik, H.J. Park, K.S. Lee and S. An, 2007a. Contributions of primary organic matter sources to macroinvertebrate production in an intertidal salt marsh (Scirpus triqueter) ecosystem. Mar. Ecol. Prog. Ser. 334: 131-143   DOI
29 Yoo, J.W., H.J. Lee, H.J. Kim, C.G. Lee, C.S. Kim, J.S. Hong, J.P. Hong and D.S. Kim, 2007. Intraction between invertebrate grazers and seaweeds in the east coast of Korea. J. Korean Soc. Oceanogr., 12: 125-132   과학기술학회마을
30 Cole, M.L., I. Valiela, K.D. Kroeger, G.L. Tomasky and 5 others, 2004. Assessment of $\delta^{15}N$ isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems. J. Environ. Qual., 33: 124-132   DOI   ScienceOn
31 Grall, J., F. Le Loc'h, B. Guyonnet and P. Riera, 2006. Community structure and food web based on stable isotopes $(\delta^{13}C\;and\;\delta^{15}N)$ analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol., 338: 1-15   DOI   ScienceOn
32 Kang, C.K., J.B. Kim, K.S. Lee, J.B. Kim, P.Y. Lee and J.S. Hong, 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Mar. Ecol. Prog. Ser., 259: 79-92   DOI
33 Park. J.H. and S. Rho, 2002. Study of the fish fauna associated with drifting seaseed in northeastern coastal waters of Cheju, Korea. Korean J. Ichthyol., 14: 36-44
34 Mutchler, T., M.J. Sullivan and B. Fry, 2004. Potential of $^{15}N$ isotope enrichment to resolve ambiguities in coastal trophic relationships. Mar. Ecol. Prog. Ser., 266: 27-33   DOI
35 Dunton, K.H. and D.M. Schell, 1987. Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: $\delta^{13}C$ evidence. Mar. Biol., 93: 615-625   DOI
36 Lee, Y.S., J.S. Lee, R.H. Jung, S.S. Kim, W.J Go, K.Y. Kim and J.S. Park, 2001. Limiting nutrient of phytoplankton growth in Gwangyang Bay. J. Korean Soc. Oceanogr., 6: 201-210
37 DeNiro, N.J. and S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta, 45: 341-351   DOI   ScienceOn
38 Duggins, D.O., C.A. Simenstad and J.A. Estes, 1989. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science, 245: 170-173   DOI   ScienceOn
39 Jennings, S., O. Renones, B. Morales-Nin, N.V.C. Polunin., J. Moranta and J. Coll. 1997. Spatial variation in the $^{15}N\;and\;^{13}C$ stable isotope composition of plants, invertebrates and fishes on Mediterranean reefs: implications for the study of trophic pathways. Mar. Ecol. Prog. Ser., 146: 109-116   DOI
40 McLusky, D.S., 1989. The Estuarine ecosystem, 2nd ed. Chapman and Hall, New York, 215pp
41 Kang, C.K., Y.S. Kang, E.J. Choy, D.S. Kim, B.T. Shim and P.Y. Lee, 2007b. Condition, reproductive activity, and gross biochemical composition of the Manila clam, Tapes philippinarum in natural and newly created sandy habitats of the southern coast of Korea. J. Shellfish Res., 26: 401-412   DOI   ScienceOn
42 Page, H.M., 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuar. Coast. Shelf Sci., 45: 823-834   DOI   ScienceOn
43 Rosenthal, R.J., W.D. Clarke and P.K. Dayton, 1974. Ecology and natural history of a stand of giant kelp, Macrocystis pyrifera, off Del Mar, California. Fish. Bull., 72: 670-684
44 McClelland, J.W. and I. Valiela, 1998. Changes in food web structure under the influence of increased anthropogenic nitrogen inputs to estuaries. Mar. Ecol. Prog. Ser., 168: 259-271   DOI
45 McClelland, J.W., I. Valiela and R.H. Michener, 1997. Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnol. Oceanogr., 42: 930-937   DOI