Browse > Article

The Factors Controlling the Formation of Spring Population of Acartia hongi (Copepoda: Calanoida) in Incheon Coastal Water, Korea  

Yoo J.K. (Environmental Engineering and Consultant Technology Institute)
Youn S.H. (East Fisheries Research Institute, NFRDI)
Choi J.K. (Department of Oceanography, Inha University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.11, no.3, 2006 , pp. 108-116 More about this Journal
Abstract
To investigate the factors controlling the spring population of Acartia hongi, egg production, hatching time of egg and predation pressure were measured. Egg production was maintained the superior position between winter and spring. Egg production was positively correlated with not only water temperature when water temperature was below $7^{\circ}C$ but also chlorophyll-a concentration when it was from $7^{\circ}C$ to $21^{\circ}C$. A regressive equation of development time$(D_e,\;day)$ of eggs derived from water temperature$(T,\;^{\circ}C)$ was obtained as $D_e=18.9(T-0.4)^{-1.0}$, showing longer development time at water temperature below $5^{\circ}C$. In Cross Correlation Analysis(CCA) to examine the time-lag relationship among abundances of developmental stages of A. hongi, egg production rate calculated by multiplying population egg production rate by hatching time showed more significant correlation with nauplii abundance than population egg production rate. Therefore, it suggests that hatching time is also recognized by a factor controlling formation of population and especially, in winter, high abundance of egg derived from high daily egg production rate and delayed hatch by low water temperature become the origin of initial spring population of nauplii. Egg predation by Noctiluca scintillans, suggesting a negative factor in formation of A. hongi spring population, was observed. During spring, A. hongi eggs were found in $2.9\sim21.1%$ of individuals of N. scintillans. It was deduced that $1.2\sim49.5%$ of the eggs produced by A. hongi was preyed on by N. scintillans. In conclusion, the factors controlling spring population of A. hongi were regarded as high egg production by winter generation, the delayed development time of egg by low temperature, and egg predation of N. scintillans.
Keywords
Spring Population; Egg Production; Delayed Hatch; Egg Predation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Castro-Longoria, E. and J. A. Williams, 1999. The production of subitaneous and diapause eggs: a reproductive strategy for Acartia bifilosa (Copepoda: Calanoida) in Southampton water, UK. J. Plankton Res., 21: 65-84   DOI   ScienceOn
2 Davis, C. S., G. R. Flierl, P. H. Wiebe and P. J. S. Franks, 1991. Micropatchness, turbulence and recruitment in plankton. J. Mar. Res., 49: 109-151   DOI
3 Frost, B. W., 1985. Food limitation ofthe planktonic marine copepods Calanus pacificus and Pseudocalanus sp. in a temperate fjord. Arch. Hydrobiol. Beih. Ergebn. Limnol., 21: 1-13
4 Hirche, H. J., 1992. Egg production of Eurytemora affinis effect of k-strategy. Estuar. Coast Shelf Sci., 35: 395-407
5 Huntley, M. E. and M. D. Z. Lopez, 1992. Temperature dependent production of marine copepods: a global synthesis. Am. Nat., 140: 201-242   DOI   ScienceOn
6 Marcus, N. H., R. Lutz, W. Burnett and P. Cable, 1994. Age, viability, and vertical distribution of zooplankton resting eggs from an anoxic basin: evidence of an egg bank. Limnol. Oceanogr., 39: 154-158   DOI   ScienceOn
7 Miralto, A., A. Ianora, I. Buttino, G Romano, and M. D. Pinto, 2002 Egg production and hatching success in north Adriatic Sea populations of the copepod Acartia clausi. Chem. Ecol., 18: 117-125   DOI
8 Ohman, M. D., 1986. Predator-limited population growth of the copepod Pseudodiaptomus sp .. J. Plankton Res., 8: 673-713   DOI
9 Parsons, T. R., Y. Maita and C. M. Lalli, 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press. Oxford, 173 pp
10 Quevedo, M., R. Gonzalez-Quiros and R. Anadon, 1999. Evidence of heavy predation by Noctiluca scintillans on Acartia clausi (Copepoda) eggs off the central Cantabrian coast (NW Spain). Oceanol. Acta. 22: 127-131   DOI   ScienceOn
11 Sekiguchi, H. and T. Kato, 1976. Influence of Noctiluca's predation on the Acartia population in Ise Bay, Central Japan. J. Oceanogr. Soc. Jpn. 32: 195-198   DOI
12 Soh, H. Y and H. G. Jeong, 2003. Spatio-temporal distribution of the Genus Acartia (Copepoda: Calanoida) in the Southwestern Waters of Korea. Korean J. Environ. Biol., 21: 422-427
13 Tepper, B. and B. P. Bradley, 1989. Temporal changes in a natural population of copepods. Biol. Bull., Woods Hole, 176: 32-40   DOI
14 Viitasalo, M., 1992. Calanoid resting eggs in the Baltic Sea: implications for the population dynamics of Acartia bifilosa (Copepoda). Mar. Biol., 114: 397-405   DOI
15 Naess, T.,1991. Marine calanoid resting eggs in Norway: abundance and distribution of two copepod species in the sediment of an enclosed marine basin. Mar. Biol; 110: 261-266   DOI
16 Viitasalo, M. and T. Katajisto, 1994. Mesozooplankton resting eggs in the Baltic Sea: Identification and vertical distribution in laminated and mixed sediments. Mar. Biol., 120: 455-465   DOI
17 Pagano, M. and E. Kouassi, R. Arfi, M. Bouvy and L. Saint-Jean, 2004 In situ spawning rate of the calanoid copepod Acartia clausi in a trophic lagoontf'brie Cote d'lvoire): Diel variations and effects of environmental factors. Zool. Stud., 43: 244-254
18 윤석현, 최중기, 2003. 경기만 동물플랑크톤 군집의 시공간적 분포. 한국해양학회지 바다, 8: 243-250
19 Anderson, T. R. and D. O. Hessen, 1995. Carbon and nitrogen limitation in marine copepods? J. Plankton Res., 17: 317-331   DOI   ScienceOn
20 McLaren, I. A., 1978. Generation lengths of some temperate marine copepods: Estimation, predation, and implication. J. Fish. Res. Bd. Can., 35; 1330-1342   DOI
21 Yoo, J. K., 2001. A study on fluctuating egg abundance and egg production of Acartia hongi (Copepoda: Acartiidae) in Inchon , coastal water. Ms. Thesis, Inha Univ., 61 pp
22 Zhong, X. F. and Y.C. Xiao, 1992. Resting eggs of Acartia bifilosa Giesbrecht and A. pacifica Steuer in Jiaozhou Bay. Mar. Sci. (Qingdao), 5: 55-59
23 Marcus, N. H., 1996. Ecological and evolutionary significance ofresting eggs in marine copepods: past, present, and future studies. Hydrobiologia, 320: 141-152   DOI
24 Purcell, J. E., J. R. White and M. R. Roman, 1994. Predation by gelatinous zooplankton and resource limitation as potential controls of Acartia tonsa copepod populations in Chesapeake Bay. Limnol. Oceanogr., 39; 263-278   DOI   ScienceOn
25 Christou, E. D. and G. C. Verriopoulos, 1993. Analysis of the biological cycle of Acartia clausi (Copepoda) in a meso-oligotrophic coastal area of the eastern Mediterranean Sea using time-series analysis. Mar. Biol., 115: 643-651   DOI
26 Katajisto, T., 2003. Development of Acartia bifilosa (Copepoda: Calanoida) eggs in the northern Baltic Sea with special reference to dormancy. J. Plankton Res., 25; 357-364   DOI   ScienceOn
27 Kimmerer, W. J. and A. D. Mckinnon, 1990. High mortality in a copepod opulation caused by a parasitic dinoflagellate. Mar. Biol., 107: 449-452   DOI
28 Corkett, C. J. and I. A. McLaren, 1970. Relationships between development rate of eggs and older stages of copepods, J. Mar. Biol. Assoc. U.K., 50: 161-168   DOI
29 Jung, Y. H., H. G. Kang and Y. J. Kang, 2004. In situ egg production rate of the planktonic copepod Acartia steueri in Ilkwang Bay, Southeastern coast of Korea. J. Plankton Res., 26: 1547-553   DOI   ScienceOn
30 Uye, S., 1985. Resting egg production as a life history strategy of marine planktonic copepods. Bull. Mar. Sci., 37: 440-449
31 Poulet, S. A.,A. lanora and M. Laabir, 1995. Towards the measurement of secondary production and recruitment in copepods. ICES J. Mar. Sci., 52: 359-368   DOI   ScienceOn
32 Uye, S., 1982. Population dynamics and production of Acartia clausi Giesbrecht (Copepoda: Calanoida) in inlet waters. J. Exp. Mar. Ecol., 57: 55-83   DOI   ScienceOn
33 Watson, N. H. F. and B. N. Smallman, 1971. The role of photoperiod and temperature in the induction and termination of an arrested development in two species of freshwater cyclopid copepods. Can. J. Zool., 49: 855-862   DOI
34 Belmonte, G. and M. Puce, 1994. Morphological aspects of subitaneous and resting egg from Acartia josephinae(Calanoida). Hydrobiologia, 292: 131-135
35 Halsband, C. and H. J. Hirche, 2001. Reproductive cycles of dominant calanoid copepods in the North Sea. Mar. Ecol. Prog. Ser., 209: 219-229   DOI
36 Mullin, M. M., 1991. Relative variability of reproduction and mortality in two pelagic copepod populations. J. Plankton Res., 13: 1381-1387   DOI
37 Durbin, E. G., A. G. Durbin, T. J. Smayda and P. G. Verity, 1983. Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnol. Oceanogr., 28: 1199-1213   DOI   ScienceOn
38 Grice, G. D. and N. H. Marcus, 1981. Dormant eggs of marine copepods. Oceanogr. Mar. Biol. Annu. Rev., 19: 125-140
39 Uye, S., S. Kasahara and T. Onbe, 1979. Calanoid copepod eggs in sea-bottom muds. IV. Effects of some environmental factors on the hatching of resting eggs. Mar. Biol., 51: 151-156   DOI
40 Yoon, S. H., 2004. Spatial and temporal distribution of zooplankton copepod Acartia hongi in Kyeonggi Bay, Korea. Ph.D. Thesis, Inha Univ., 306 pp
41 Sullivan, B. K. and L. T. McManus, 1986. Factors controlling seasonal succession of the copepods Acartia hudsonica and A. tonsa in Narragansett Bay, Rhode Island: temperature and resting egg production. Mar. Ecol. Prog. Ser., 28: 121-128   DOI
42 Longhurst, A. R., 1985. The structure and evolution of plankton communities. Prog. Oceanogr., 15: 1-35   DOI   ScienceOn
43 Uye, S., 1980. Development of neritic copepods Acartia clausi and A. steueri. I. Some environmental factors affecting egg development and the nature of resting eggs. Bull. Plankton Soc. Jpn, 27: 1-9
44 Ianora A. and I. Buttino, 1990. Seasonal cycles in population abundances and egg production rates in the planktonic copepods Centropages typicus and Acartia clausi. J. Plankton Res., 12: 473--481   DOI
45 Jiang, X.,G. Wang and S. Li, 2004. Age, distribution and abundance of viable resting eggs of Acartia pacifica (Copepoda: Calanoida) in Xiamen Bay, China. J. Exp. Mar. Biol. Ecol., 312: 89-100   DOI   ScienceOn
46 Park, C. and M. R. Landry, 1993. Egg production by subtropical copepod Uninula vulgaris. Mar. Biol., 117: 415-421
47 강형구, 강용주, 1998. 한국 동해 남부 연안 일광만의 요각류 Acartia steueri의 알 생산력. 한국수산학회지, 31: 288-295
48 Raymont, J. E. G., 1983. Plankton and productivity in the oceans. Vol II. Zooplankton. Pergamon Press, Oxford, 824 pp
49 Katajisto, T., M. Viitasalo and M. Koski, 1998. Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea. Mar. Ecol. Prog. Ser., 163; 133-143   DOI
50 Runge, J. A., 1988. Should we expect a relationship between primary production and fisheries? The role of copepod dynamics as a filter of trophic variability. Hydrobiologia, 167/168: 67-71
51 Chen, F. and N. H. Marcus, 1997. Subitaneous, diapause, and delayedhatching eggs of planktonic copepods from the northern Gulf of Mexico: morphology and hatching success. Mar. Biol., 127: 587-597   DOI