Browse > Article

Selenoprotein S Suppression Enhances the Late Stage Differentiation of Proerythrocytes Via SIRT1  

Yang, Hee-Young (Department of Oral Biochemistry, Dental Science Research Institute, The 2nd Stage of Brain Korea 21 for Dental School, Chonnam National University)
Chung, Kyoung-Jin (Department of Oral Biochemistry, Dental Science Research Institute, The 2nd Stage of Brain Korea 21 for Dental School, Chonnam National University)
Park, Hyang-Rim (Department of Oral Biochemistry, Dental Science Research Institute, The 2nd Stage of Brain Korea 21 for Dental School, Chonnam National University)
Han, Seong-Jeong (Department of Biochemistry, Center for Aging and Geriatrics, Chonnam National University Medical School)
Lee, Seung-Rock (Department of Biochemistry, Center for Aging and Geriatrics, Chonnam National University Medical School)
Chay, Kee-Oh (Department of Biochemistry, Center for Aging and Geriatrics, Chonnam National University Medical School)
Kim, Ick-Young (Laboratory of Cellular and Molecular Biochemistry, School of Life Sciences and Biotechnology, Korea University)
Park, Byung-Ju (Department of Oral Biochemistry, Dental Science Research Institute, The 2nd Stage of Brain Korea 21 for Dental School, Chonnam National University)
Lee, Tae-Hoon (Department of Oral Biochemistry, Dental Science Research Institute, The 2nd Stage of Brain Korea 21 for Dental School, Chonnam National University)
Publication Information
International Journal of Oral Biology / v.35, no.2, 2010 , pp. 61-67 More about this Journal
Abstract
Selenoprotein S (SelS) is widely expressed in diverse tissues where it localizes in the plasma membrane and endoplasmic reticulum. We studied the potential function of SelS in erythrocyte differentiation using K562 cells stably over-expressing SelS wild-type (WT) or one of two SelS point mutants, $U_{188}S$ or $U_{188}C$. We found that in the K562 cells treated with $1\;{\mu}M$ Ara-C, SelS gradually declined over five days of treatment. On day 4, intracellular ROS levels were higher in cells expressing SelS-WT than in those expressing a SelS mutant. Moreover, the cell cycle patterns in cells expressing SelS-WT or $U_{188}C$ were similar to the controls. The expression and activation of SIRT1 were also reduced during K562 differentiation. Cells expressing SelS-WT showed elevated SIRT1 expression and activation (phosphorylation), as well as higher levels of FoxO3a expression. SIRT1 activation was diminished slightly in cells expressing SelS-WT after treatment with the ROS scavenger NAC (12 mM), but not in those expressing a SelS mutant. After four days of Ara-C treatment, SelS-WT-expressing cells showed elevated transcription of $\beta$-globin, $\gamma$-globin, $\varepsilon$-globin, GATA-1 and zfpm-1, whereas cells expressing a SelS mutant did not. These results suggest that the suppression of SelS acts as a trigger for proerythrocyte differentiation via the ROS-mediated downregulation of SIRT1.
Keywords
SelS; SIRT1; erythrocyte differentiation; FoxO3;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, Washida N, Tokuyama H, Hayashi K, Itoh H. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Biophys Res Commun. 2008;372:51-6.   DOI   ScienceOn
2 Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T, Ghaffari S. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest. 2007;117: 2133-44.   DOI   ScienceOn
3 Skokowa J, Lan D, Thakur BK, Wang F, Gupta K, Cario G, Brechlin AM, Schambach A, Hinrichsen L, Meyer G, Gaestel M, Stanulla M, Tong Q, Welte K. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)- sirtuin-1-dependent pathway. Nat Med. 2009;15:151-8.   DOI   ScienceOn
4 Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. Embo J. 2004;23:2369-80.   DOI   ScienceOn
5 Windmill K, Tenne-Brown J, Bayles R, Trevaskis J, Gao Y, Walder K, Collier GR. Localization and expression of selenoprotein S in the testis of Psammomys obesus. J Mol Histol. 2007;38:97-101.   DOI   ScienceOn
6 Bakker WJ, van Dijk TB, Parren-van Amelsvoort M, Kolbus A, Yamamoto K, Steinlein P, Verhaak RG, Mak TW, Beug H, Lowenberg B, von Lindern M. Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol. 2007; 27:3839-3854.   DOI   ScienceOn
7 Sakamoto J, Miura T, Shimamoto K, Horio Y. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett. 2004;556:281-6.   DOI   ScienceOn
8 Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W, Scrable H. Phosphorylation regulates SIRT1 function. PLoS ONE. 2008;3:e4020.   DOI   ScienceOn
9 Steinbrenner H, Sies H. Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta. 2009;1790: 1478-85.   DOI   ScienceOn
10 Walder K, Kantham L, McMillan JS, Trevaskis J, Kerr L, De Silva A, Sunderland T, Godde N, Gao Y, Bishara N, Windmill K, Tenne-Brown J, Augert G, Zimmet PZ, Collier GR. Tanis: a link between type 2 diabetes and inflammation? Diabetes. 2002;51:1859-66.   DOI   ScienceOn
11 Yang HY, Jeong DK, Kim SH, Chung KJ, Cho EJ, Yang U, Lee SR, Lee TH. The role of peroxiredoxin III on late stage of proerythrocyte differentiation. Biochem Biophys Res Commun. 2007a;359:1030-6.   DOI   ScienceOn
12 Yang HY, Kim SH, Kim SH, Kim DJ, Kim SU, Yu DY, Yeom YI, Lee DS, Kim YJ, Park BJ, Lee TH. The suppression of zfpm-1 accelerates the erythropoietic differentiation of human CD34+ cells. Biochem Biophys Res Commun. 2007b;353: 978-84.   DOI   ScienceOn
13 Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature. 2004;429:841-7.   DOI   ScienceOn
14 Zeng J, Du S, Zhou J, Huang K. Role of SelS in lipopolysaccharide- induced inflammatory response in hepatoma HepG2 cells. Arch Biochem Biophys. 2008;478:1-6.   DOI   ScienceOn
15 Zschoernig B, Mahlknecht U. SIRTUIN 1: regulating the regulator. Biochem Biophys Res Commun. 2008;376:251-5.   DOI   ScienceOn
16 Kim MJ, Ahn K, Park SH, Kang HJ, Jang BG, Oh SJ, Oh SM, Jeong YJ, Heo JI, Suh JG, Lim SS, Ko YJ, Huh SO, Kim SC, Park JB, Kim J, Kim JI, Jo SA, Lee JY. SIRT1 regulates tyrosine hydroxylase expression and differentiation of neuroblastoma cells via FOXO3a. FEBS Lett. 2009;583: 1183-8.   DOI   ScienceOn
17 Luisi-DeLuca C, Mitchell T, Spriggs D, Kufe DW. Induction of terminal differentiation in human K562 erythroleukemia cells by arabinofuranosylcytosine. J Clin Invest. 1984;74:821-7.   DOI
18 Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN. Characterization of mammalian selenoproteomes. Science. 2003;300:1439-43.   DOI   ScienceOn
19 Lee TH, Kim SU, Yu SL, Kim SH, Park DS, Moon HB, Dho SH, Kwon KS, Kwon HJ, Han YH, Jeong S, Kang SW, Shin HS, Lee KK, Rhee SG, Yu DY. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood. 2003; 101:5033-8.   DOI   ScienceOn
20 Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell. 2006;126:257-68.   DOI   ScienceOn
21 Nakata S, Matsumura I, Tanaka H, Ezoe S, Satoh Y, Ishikawa J, Era T, Kanakura Y. NF-kappaB family proteins participate in multiple steps of hematopoiesis through elimination of reactive oxygen species. J Biol Chem. 2004;279:55578-86.   DOI   ScienceOn
22 Ota H, Eto M, Kano MR, Ogawa S, Iijima K, Akishita M, Ouchi Y. Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28: 1634-9.   DOI   ScienceOn
23 inho FO, de Albuquerque DM, Olalla Saad ST, Costa FF. Reduction of AHSP synthesis in hemin-induced K562 cells and EPO-induced CD34(+) cells leads to alpha-globin precipitation, impairment of normal hemoglobin production, and increased cell death. Exp Hematol. 2008;36:265-72.
24 Prozorovski T, Schulze-Topphoff U, Glumm R, Baumgart J, Schroter F, Ninnemann O, Siegert E, Bendix I, Brustle O, Nitsch R, Zipp F, Aktas O. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol. 2008;10:385-94.   DOI   ScienceOn
25 Curran JE, Jowett JB, Elliott KS, Gao Y, Gluschenko K, Wang J, Abel Azim DM, Cai G, Mahaney MC, Comuzzie AG, Dyer TD, Walder KR, Zimmet P, MacCluer JW, Collier GR, Kissebah AH, Blangero J. Genetic variation in selenoprotein S influences inflammatory response. Nat Genet. 2005;37: 1234-41.
26 Giannakou ME, Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol. 2004;14:408-12.   DOI   ScienceOn
27 Gao Y, Feng HC, Walder K, Bolton K, Sunderland T, Bishara N, Quick M, Kantham L, Collier GR. Regulation of the selenoprotein SelS by glucose deprivation and endoplasmic reticulum stress - SelS is a novel glucose-regulated protein. FEBS Lett. 2004;563:185-90.   DOI   ScienceOn
28 Gao Y, Pagnon J, Feng HC, Konstantopolous N, Jowett JB, Walder K, Collier GR. Secretion of the glucose-regulated selenoprotein SEPS1 from hepatoma cells. Biochem Biophys Res Commun. 2007;356:636-41.   DOI   ScienceOn
29 Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal. 2008;10: 1923-40.   DOI   ScienceOn
30 Guarente L, Picard F. Calorie restriction--the SIR2 connection. Cell. 2005;120:473-82.   DOI   ScienceOn
31 Hattangadi SM, Lodish HF. Regulation of erythrocyte lifespan: do reactive oxygen species set the clock? J Clin Invest. 2007;117:2075-7.   DOI   ScienceOn
32 Hoffmann PR, Berry MJ. The influence of selenium on immune responses. Mol Nutr Food Res. 2008;52:1273-80.   DOI   ScienceOn
33 Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120:2479-87.   DOI   ScienceOn
34 Kim KH, Gao Y, Walder K, Collier GR, Skelton J, Kissebah AH. SEPS1 protects RAW264.7 cells from pharmacological ER stress agent-induced apoptosis. Biochem Biophys Res Commun. 2007;354:127-32.   DOI   ScienceOn
35 Chenais B, Andriollo M, Guiraud P, Belhoussine R, Jeannesson P. Oxidative stress involvement in chemically induced differentiation of K562 cells. Free Radic Biol Med. 2000;28:18-27.   DOI   ScienceOn
36 Aerbajinai W, Zhu J, Gao Z, Chin K, Rodgers GP. Thalidomide induces gamma-globin gene expression through increased reactive oxygen species-mediated p38 MAPK signaling and histone H4 acetylation in adult erythropoiesis. Blood. 2007; 110:2864-71.   DOI   ScienceOn
37 Bakker WJ, Blazquez-Domingo M, Kolbus A, Besooyen J, Steinlein P, Beug H, Coffer PJ, Lowenberg B, von Lindern M, van Dijk TB. FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1. J Cell Biol. 2004;164:175-84.   DOI   ScienceOn
38 Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004; 303:2011-5.   DOI   ScienceOn
39 Coussens M, Maresh JG, Yanagimachi R, Maeda G, Allsopp R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS ONE. 2008;3:e1571.   DOI   ScienceOn
40 Zschoernig B, Mahlknecht U. Carboxy-terminal phosphorylation of SIRT1 by protein kinase CK2. Biochem Biophys Res Commun. 2009;381:372-7.   DOI   ScienceOn