Browse > Article
http://dx.doi.org/10.5125/jkaoms.2022.48.2.94

Comparative effects of systemic administration of levofloxacin and cephalexin on fracture healing in rats  

Golestani, Shayan (Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch)
Golestaneh, Arash (Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch)
Gohari, Atousa Aminzadeh (Department of Oral Pathology, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch)
Publication Information
Journal of the Korean Association of Oral and Maxillofacial Surgeons / v.48, no.2, 2022 , pp. 94-100 More about this Journal
Abstract
Objectives: This study aimed to compare the effects of systemic administration of levofloxacin or cephalexin on fracture healing in rats. Materials and Methods: In this animal study, tibial fractures not requiring fixation were artificially induced in 30 male Wistar albino rats using a 1.1 mm surgical bur. The rats were randomly divided into 6 groups (n=5). Groups 1 and 2 received daily subcutaneous saline injections. Groups 3 and 4 received subcutaneous injections of 25 mg/kg levofloxacin twice daily. Groups 5 and 6 received daily subcutaneous injections of 20 mg/kg cephalexin. The rats in Groups 1, 3, and 5 were sacrificed after 1 week, while the rats in Groups 2, 4, and 6 were sacrificed after 4 weeks. The score of fracture healing was determined through histological assessment of sections from the fracture site according to Perry and colleagues. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests. Results: The mean score of fracture healing at 4 weeks was significantly higher than that at 1 week in the saline, levofloxacin, and cephalexin groups (P<0.001). At 1 week, no significant difference was noted among the three groups of saline, levofloxacin, and cephalexin in the mean score of fracture healing (P=0.360). However, this difference was significant at 4 weeks (P=0.018), and the mean score in the saline group was significantly higher compared to that in the levofloxacin group (P=0.015). Conclusion: It is recommended not to prescribe levofloxacin for more than 1 week after surgical management of bone fractures due to its possible adverse effects on fracture healing.
Keywords
Mandibular fractures; Bone regeneration; Levofloxacin; Cephalexin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 1997;38:41-8. https://doi.org/10.1093/ilar.38.1.41   DOI
2 Williams BH. Therapeutics in ferrets. Vet Clin North Am Exot Anim Pract 2000;3:131-53, vi. https://doi.org/10.1016/s1094-9194(17)30098-1   DOI
3 Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, et al.; American Society of Health-System Pharmacists (ASHP); Infectious Diseases Society of America (IDSA); Surgical Infection Society (SIS); Society for Healthcare Epidemiology of America (SHEA). Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect (Larchmt) 2013;14:73-156. https://doi.org/10.1089/sur.2013.9999   DOI
4 MalekiGorji M, Golestaneh A, Razavi SM. The effect of two phosphodiesterase inhibitors on bone healing in mandibular fractures (animal study in rats). J Korean Assoc Oral Maxillofac Surg 2020;46:258-65. https://doi.org/10.5125/jkaoms.2020.46.4.258   DOI
5 Ucan MC, Koparal M, Agacayak S, Gunay A, Ozgoz M, Atilgan S, et al. Influence of caffeic acid phenethyl ester on bone healing in a rat model. J Int Med Res 2013;41:1648-54. https://doi.org/10.1177/0300060513490613   DOI
6 Shokier H, Khalifa G, Fawzy A, Sallam MM. Experimental use of autogenous bone grafts as an alternative method for bone plates in treatment of mandibular fracture. Aust J Basic Appl Sci 2010;4:1466-72.
7 Hausman MR, Schaffler MB, Majeska RJ. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 2001;29:560-4. https://doi.org/10.1016/s8756-3282(01)00608-1   DOI
8 Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 2008;39 Suppl 2:S45-57. https://doi.org/10.1016/S0020-1383(08)70015-9   DOI
9 Cook JJ, Summers NJ, Cook EA. Healing in the new millennium: bone stimulators: an overview of where we've been and where we may be heading. Clin Podiatr Med Surg 2015;32:45-59. https://doi.org/10.1016/j.cpm.2014.09.003   DOI
10 Perry AC, Prpa B, Rouse MS, Piper KE, Hanssen AD, Steckelberg JM, et al. Levofloxacin and trovafloxacin inhibition of experimental fracture-healing. Clin Orthop Relat Res 2003;414:95-100. https://doi.org/10.1097/01.blo.0000087322.60612.14   DOI
11 Maxwell A. The molecular basis of quinolone action. J Antimicrob Chemother 1992;30:409-14. https://doi.org/10.1093/jac/30.4.409   DOI
12 Pountos I, Georgouli T, Bird H, Kontakis G, Giannoudis PV. The effect of antibiotics on bone healing: current evidence. Expert Opin Drug Saf 2011;10:935-45. https://doi.org/10.1517/14740338.2011.589833   DOI
13 Holtom PD, Pavkovic SA, Bravos PD, Patzakis MJ, Shepherd LE, Frenkel B. Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro. J Orthop Res 2000;18:721-7. https://doi.org/10.1002/jor.1100180507   DOI
14 Salzmann GM, Naal FD, von Knoch F, Tuebel J, Gradinger R, Imhoff AB, et al. Effects of cefuroxime on human osteoblasts in vitro. J Biomed Mater Res A 2007;82:462-8. https://doi.org/10.1002/jbm.a.31158   DOI
15 Brown SA. Fluoroquinolones in animal health. J Vet Pharmacol Ther 1996;19:1-14. https://doi.org/10.1111/j.1365-2885.1996.tb00001.x   DOI
16 Martinez M, McDermott P, Walker R. Pharmacology of the fluoroquinolones: a perspective for the use in domestic animals. Vet J 2006;172:10-28. https://doi.org/10.1016/j.tvjl.2005.07.010   DOI
17 Gough A, Johnson R, Campbell E, Hall L, Tylor J, Carpenter A, et al. Quinolone arthropathy in immature rabbits treated with the fluoroquinolone, PD 117596. Exp Toxicol Pathol 1996;48:225-32. https://doi.org/10.1016/S0940-2993(96)80003-0   DOI
18 Stahlmann R, Schwabe R. Safety profile of grepafloxacin compared with other fluoroquinolones. J Antimicrob Chemother 1997;40 Suppl A:83-92. https://doi.org/10.1093/jac/40.suppl_1.83   DOI
19 Kato M, Takada S, Ogawara S, Takayama S. Effect of levofloxacin on glycosaminoglycan and DNA synthesis of cultured rabbit chondrocytes at concentrations inducing cartilage lesions in vivo. Antimicrob Agents Chemother 1995;39:1979-83. https://doi.org/10.1128/AAC.39.9.1979   DOI
20 Shakibaei M, Kociok K, Forster C, Vormann J, Gunther T, Stahlmann R, et al. Comparative evaluation of ultrastructural changes in articular cartilage of ofloxacin-treated and magnesium-deficient immature rats. Toxicol Pathol 1996;24:580-7. https://doi.org/10.1177/019262339602400507   DOI
21 Forster C, Rucker M, Shakibaei M, Baumann-Wilschke I, Vormann J, Stahlmann R. Effects of fluoroquinolones and magnesium deficiency in murine limb bud cultures. Arch Toxicol 1998;72:411-9. https://doi.org/10.1007/s002040050521   DOI
22 Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol 2013;5:a008334. https://doi.org/10.1101/cshperspect.a008334   DOI
23 Forster C, Kociok K, Shakibaei M, Merker HJ, Stahlmann R. Quinolone-induced cartilage lesions are not reversible in rats. Arch Toxicol 1996;70:474-81. https://doi.org/10.1007/s002040050301   DOI
24 Kallala R, Graham SM, Nikkhah D, Kyrkos M, Heliotis M, Mantalaris A, et al. In vitro and in vivo effects of antibiotics on bone cell metabolism and fracture healing. Expert Opin Drug Saf 2012;11:15-32. https://doi.org/10.1517/14740338.2012.643867   DOI
25 Edin ML, Miclau T, Lester GE, Lindsey RW, Dahners LE. Effect of cefazolin and vancomycin on osteoblasts in vitro. Clin Orthop Relat Res 1996;333:245-51.
26 Linseman DA, Hampton LA, Branstetter DG. Quinolone-induced arthropathy in the neonatal mouse. Morphological analysis of articular lesions produced by pipemidic acid and ciprofloxacin. Fundam Appl Toxicol 1995;28:59-64. https://doi.org/10.1006/faat.1995.1146   DOI
27 Egerbacher M, Seiberl G, Wolfesberger B, Walter I. Ciprofloxacin causes cytoskeletal changes and detachment of human and rat chondrocytes in vitro. Arch Toxicol 2000;73:557-63. https://doi.org/10.1007/s002040050008   DOI
28 Menschik M, Neumuller J, Steiner CW, Erlacher L, Koller M, Ullrich R, et al. Effects of ciprofloxacin and ofloxacin on adult human cartilage in vitro. Antimicrob Agents Chemother 1997;41:2562-5. https://doi.org/10.1128/AAC.41.11.2562   DOI
29 Huddleston PM, Steckelberg JM, Hanssen AD, Rouse MS, Bolander ME, Patel R. Ciprofloxacin inhibition of experimental fracture healing. J Bone Joint Surg Am 2000;82:161-73. https://doi.org/10.2106/00004623-200002000-00002   DOI
30 Egerbacher M, Edinger J, Tschulenk W. Effects of enrofloxacin and ciprofloxacin hydrochloride on canine and equine chondrocytes in culture. Am J Vet Res 2001;62:704-8. https://doi.org/10.2460/ajvr.2001.62.704   DOI
31 Krischak GD, Augat P, Blakytny R, Claes L, Kinzl L, Beck A. The non-steroidal anti-inflammatory drug diclofenac reduces appearance of osteoblasts in bone defect healing in rats. Arch Orthop Trauma Surg 2007;127:453-8. https://doi.org/10.1007/s00402-007-0288-9   DOI
32 Sitovs A, Voiko L, Kustovs D, Kovalcuka L, Bandere D, Purvina S, et al. Pharmacokinetic profiles of levofloxacin after intravenous, intramuscular and subcutaneous administration to rabbits (Oryctolagus cuniculus). J Vet Sci 2020;21:e32. https://doi.org/10.4142/jvs.2020.21.e32   DOI
33 Shahabadi N, Hashempour S. DNA binding studies of antibiotic drug cephalexin using spectroscopic and molecular docking techniques. Nucleosides Nucleotides Nucleic Acids 2019;38:428-47. https://doi.org/10.1080/15257770.2018.1562071   DOI
34 Papich MG, Lindeman C. Cephalexin susceptibility breakpoint for veterinary isolates: Clinical Laboratory Standards Institute revision. J Vet Diagn Invest 2018;30:113-20. https://doi.org/10.1177/1040638717742434   DOI
35 Massari L, Caruso G, Sollazzo V, Setti S. Pulsed electromagnetic fields and low intensity pulsed ultrasound in bone tissue. Clin Cases Miner Bone Metab 2009;6:149-54.
36 Rissing JP. Antimicrobial therapy for chronic osteomyelitis in adults: role of the quinolones. Clin Infect Dis 1997;25:1327-33. https://doi.org/10.1086/516150   DOI
37 Atalay Y, Gunes N, Guner MD, Akpolat V, Celik MS, Guner R. Pentoxifylline and electromagnetic field improved bone fracture healing in rats. Drug Des Devel Ther 2015;9:5195-201. https://doi.org/10.2147/DDDT.S89669   DOI
38 Hernandez RK, Do TP, Critchlow CW, Dent RE, Jick SS. Patient-related risk factors for fracture-healing complications in the United Kingdom General Practice Research Database. Acta Orthop 2012;83:653-60. https://doi.org/10.3109/17453674.2012.747054   DOI
39 Davis R, Bryson HM. Levofloxacin. A review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs 1994;47:677-700. https://doi.org/10.2165/00003495-199447040-00008   DOI