Browse > Article
http://dx.doi.org/10.5125/jkaoms.2020.46.4.258

The effect of two phosphodiesterase inhibitors on bone healing in mandibular fractures (animal study in rats)  

MalekiGorji, Mohsen (Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University)
Golestaneh, Arash (Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University)
Razavi, Seyyed Mohammad (Torabinejad Dental Research Center and Department of Oral and Maxillofacial Pathology, School of Dentistry, Isfahan University of Medical Sciences)
Publication Information
Journal of the Korean Association of Oral and Maxillofacial Surgeons / v.46, no.4, 2020 , pp. 258-265 More about this Journal
Abstract
Objectives: Despite advances in maxillofacial surgery, impaired bone healing remains a concern for surgical teams. Many studies have evaluated the effects of sildenafil and pentoxifylline on bone healing. However, their effects on healing of bone fractures have not been well investigated. This study aimed to assess the effects of the phosphodiesterase inhibitors sildenafil and pentoxifylline on healing of mandibular fractures in rats. Materials and Methods: A total of 60 rats were randomly divided into six groups of 10. Mandibular fracture was induced in all rats. After the surgical procedure, group C1 received saline, group S1 received 10 mg/kg sildenafil and group P1 received 50 mg/kg pentoxifylline. The rats were sacrificed after 1 week. Groups C4, S4, and P4 received pharmaceutical therapy as in groups C1, S1, and P1 but were sacrificed after 4 weeks. The samples then underwent histological analysis. Results: The mean rate of bone healing of mandibular fractures in groups S1 and P1 was significantly higher than in group C1 at 1 week (P<0.001). The mean rate of bone healing of mandibular fractures in group P1 was higher than in group S1 at 1 week (P=0.04). The mean rate of bone healing of mandibular fractures in groups S4 (P=0.001) and P4 (P=0.004) was significantly higher than in group C4 at 4 weeks, but no significant difference was noted in the rate of healing between groups P4 and S4 (P=0.53). Conclusion: Sildenafil and pentoxifylline can be used as adjuncts to enhance bone healing in rats.
Keywords
Bone regeneration; Mandibular fracture; Pentoxifylline; Sildenafil;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, et al. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone 2018;106:78-89. https://doi.org/10.1016/j.bone.2015.10.019   DOI
2 Rotter N, Haisch A, Bucheler M. Cartilage and bone tissue engineering for reconstructive head and neck surgery. Eur Arch Otorhinolaryngol 2005;262:539-45. https://doi.org/10.1007/s00405-004-0866-1   DOI
3 Vega LG. Reoperative mandibular trauma: management of posttraumatic mandibular deformities. Oral Maxillofac Surg Clin North Am 2011;23:47-61, v-vi. https://doi.org/10.1016/j.coms.2010.12.003   DOI
4 Irkorucu O, Tascilar O, Cakmak GK, Karakaya K, Emre AU, Ucan BH, et al. The effect of sildenafil on an animal model for ischemic colitis. Dig Dis Sci 2008;53:1618-23. https://doi.org/10.1007/s10620-007-0033-9   DOI
5 Atalay Y, Bozkurt MF, Gonul Y, Cakmak O, Agacayak KS, Kose I, et al. The effects of amlodipine and platelet rich plasma on bone healing in rats. Drug Des Devel Ther 2015;9:1973-81. https://doi.org/10.2147/DDDT.S80778
6 Anitua E, Sanchez M, Orive G, Andia I. The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials 2007;28:4551-60. https://doi.org/10.1016/j.biomaterials.2007.06.037   DOI
7 Yaman F, Atilgan S, Gunes N, Agacayak S, Gunay A, Ucan MC, et al. Phosphodiesterase-5 inhibitors may facilitate bone defect recovery. Eur Rev Med Pharmacol Sci 2011;15:1301-5.
8 Rajkumar DS, Faitelson AV, Gudyrev OS, Dubrovin GM, Pokrovski MV, Ivanov AV. Comparative evaluation of enalapril and losartan in pharmacological correction of experimental osteoporosis and fractures of its background. J Osteoporos 2013;2013:325693. https://doi.org/10.1155/2013/325693   DOI
9 Si W, Kang Q, Luu HH, Park JK, Luo Q, Song WX, et al. CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol 2006;26:2955-64. https://doi.org/10.1128/MCB.26.8.2955-2964.2006   DOI
10 Corbett SA, Hukkanen M, Batten J, McCarthy ID, Polak JM, Hughes SP. Nitric oxide in fracture repair. Differential localisation, expression and activity of nitric oxide synthases. J Bone Joint Surg Br 1999;81:531-7. https://doi.org/10.1302/0301-620x.81b3.8852   DOI
11 Takami M, Cho ES, Lee SY, Kamijo R, Yim M. Phosphodiesterase inhibitors stimulate osteoclast formation via TRANCE/RANKL expression in osteoblasts: possible involvement of ERK and p38 MAPK pathways. FEBS Lett 2005;579:832-8. https://doi.org/10.1016/j.febslet.2004.12.066   DOI
12 Horiuchi H, Saito N, Kinoshita T, Wakabayashi S, Tsutsumimoto T, Otsuru S, et al. Enhancement of recombinant human bone morphogenetic protein-2 (rhBMP-2)-induced new bone formation by concurrent treatment with parathyroid hormone and a phosphodiesterase inhibitor, pentoxifylline. J Bone Miner Metab 2004;22:329-34. https://doi.org/10.1007/s00774-003-0490-y   DOI
13 Horiuchi H, Saito N, Kinoshita T, Wakabayashi S, Tsutsumimoto T, Takaoka K. Enhancement of bone morphogenetic protein-2-induced new bone formation in mice by the phosphodiesterase inhibitor pentoxifylline. Bone 2001;28:290-4. https://doi.org/10.1016/s8756-3282(00)00450-6   DOI
14 Hausman MR, Schaffler MB, Majeska RJ. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 2001;29:560-4. https://doi.org/10.1016/s8756-3282(01)00608-1   DOI
15 Gong Y, Xu CY, Wang JR, Hu XH, Hong D, Ji X, et al. Inhibition of phosphodiesterase 5 reduces bone mass by suppression of canonical Wnt signaling. Cell Death Dis 2014;5:e1544. https://doi.org/10.1038/cddis.2014.510   DOI
16 Tsutsumimoto T, Wakabayashi S, Kinoshita T, Horiuchi H, Takaoka K. A phosphodiesterase inhibitor, pentoxifylline, enhances the bone morphogenetic protein-4 (BMP-4)-dependent differentiation of osteoprogenitor cells. Bone 2002;31:396-401. https://doi.org/10.1016/s8756-3282(02)00839-6   DOI
17 Gloria JCR, Fernandes IA, Silveira EMD, Souza GM, Rocha RL, Galvao EL, et al. Comparison of bite force with locking plates versus non-locking plates in the treatment of mandibular fractures: a meta-analysis. Int Arch Otorhinolaryngol 2018;22:181-9. https://doi.org/10.1055/s-0037-1604056   DOI
18 Ucan MC, Koparal M, Agacayak S, Gunay A, Ozgoz M, Atilgan S, et al. Influence of caffeic acid phenethyl ester on bone healing in a rat model. J Int Med Res 2013;41:1648-54. https://doi.org/10.1177/0300060513490613   DOI
19 Fernandez JR, Gallas M, Burguera M, Viano JM. A threedimensional numerical simulation of mandible fracture reduction with screwed miniplates. J Biomech 2003;36:329-37. https://doi.org/10.1016/s0021-9290(02)00416-5   DOI
20 Durmus K, Turgut NH, Dogan M, Tuncer E, Ozer H, Altuntas EE, et al. Histopathological evaluation of the effect of locally administered strontium on healing time in mandibular fractures: an experimental study. Adv Clin Exp Med 2017;26:1063-7. https://doi.org/10.17219/acem/65477   DOI
21 Perry AC, Prpa B, Rouse MS, Piper KE, Hanssen AD, Steckelberg JM, et al. Levofloxacin and trovafloxacin inhibition of experimental fracture-healing. Clin Orthop Relat Res 2003;(414):95-100. https://doi.org/10.1097/01.blo.0000087322.60612.14
22 Dincel YM, Alagoz E, Arikan Y, Caglar AK, Dogru SC, Ortes F, et al. Biomechanical, histological, and radiological effects of different phosphodiesterase inhibitors on femoral fracture healing in rats. J Orthop Surg (Hong Kong) 2018;26:2309499018777885. https://doi.org/10.1177/2309499018777885
23 Hankenson KD, Zimmerman G, Marcucio R. Biological perspectives of delayed fracture healing. Injury 2014;45 Suppl 2:S8-15. https://doi.org/10.1016/j.injury.2014.04.003   DOI
24 Cook JJ, Summers NJ, Cook EA. Healing in the new millennium: bone stimulators: an overview of where we've been and where we may be heading. Clin Podiatr Med Surg 2015;32:45-59. https://doi.org/10.1016/j.cpm.2014.09.003   DOI
25 Chao EY, Inoue N. Biophysical stimulation of bone fracture repair, regeneration and remodelling. Eur Cell Mater 2003;6:72-84; discussion 84-5. https://doi.org/10.22203/ecm.v006a07   DOI
26 Massari L, Caruso G, Sollazzo V, Setti S. Pulsed electromagnetic fields and low intensity pulsed ultrasound in bone tissue. Clin Cases Miner Bone Metab 2009;6:149-54.
27 Zandi M, Dehghan A, Amini P, Rezaeian L, Doulati S. Evaluation of mandibular fracture healing in rats under zoledronate therapy: a histologic study. Injury 2017;48:2683-7. https://doi.org/10.1016/j.injury.2017.10.026   DOI
28 Colnot C, Lu C, Hu D, Helms JA. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol 2004;269:55-69. https://doi.org/10.1016/j.ydbio.2004.01.011   DOI
29 Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV. Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 2008;39 Suppl 2:S45-57. https://doi.org/10.1016/S0020-1383(08)70015-9   DOI
30 Lienau J, Schell H, Epari DR, Schutze N, Jakob F, Duda GN, et al. CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability. J Orthop Res 2006;24:254-62. https://doi.org/10.1002/jor.20035   DOI
31 Diwan AD, Wang MX, Jang D, Zhu W, Murrell GA. Nitric oxide modulates fracture healing. J Bone Miner Res 2000;15:342-51. https://doi.org/10.1359/jbmr.2000.15.2.342   DOI
32 Vidavalur R, Penumathsa SV, Zhan L, Thirunavukkarasu M, Maulik N. Sildenafil induces angiogenic response in human coronary arteriolar endothelial cells through the expression of thioredoxin, hemeoxygenase and vascular endothelial growth factor. Vascul Pharmacol 2006;45:91-5. https://doi.org/10.1016/j.vph.2006.03.010   DOI
33 Baldik Y, Talu U, Altinel L, Bilge H, Demiryont M, Aykac-Toker G. Bone healing regulated by nitric oxide: an experimental study in rats. Clin Orthop Relat Res 2002;(404):343-52. https://doi.org/10.1097/00003086-200211000-00051
34 Derici H, Kamer E, Unalp HR, Diniz G, Bozdag AD, Tansug T, et al. Effect of sildenafil on wound healing: an experimental study. Langenbecks Arch Surg 2010;395:713-8. https://doi.org/10.1007/s00423-009-0471-2   DOI
35 Histing T, Marciniak K, Scheuer C, Garcia P, Holstein JH, Klein M, et al. Sildenafil accelerates fracture healing in mice. J Orthop Res 2011;29:867-73. https://doi.org/10.1002/jor.21324   DOI
36 Delanian S, Porcher R, Rudant J, Lefaix JL. Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis. J Clin Oncol 2005;23:8570-9. https://doi.org/10.1200/JCO.2005.02.4729   DOI
37 Hart K, Baur D, Hodam J, Lesoon-Wood L, Parham M, Keith K, et al. Short- and long-term effects of sildenafil on skin flap survival in rats. Laryngoscope 2006;116:522-8. https://doi.org/10.1097/01.mlg.0000200792.67802.3b   DOI
38 Das A, Xi L, Kukreja RC. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 2005;280:12944-55. https://doi.org/10.1074/jbc.M404706200   DOI
39 Essayan DM. Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol 2001;108:671-80. https://doi.org/10.1067/mai.2001.119555   DOI
40 Ward A, Clissold SP. Pentoxifylline. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs 1987;34:50-97. https://doi.org/10.2165/00003495-198734010-00003   DOI
41 Bayat M, Amini A, Rezaie F, Bayat S. Patents of pentoxifylline administration on some diseases and chronic wounds. Recent Pat Regen Med 2014;4:137-43. https://doi.org/10.2174/2210296504666140813194744   DOI
42 Vashghani Farahani MM, Masteri Farahani R, Mostafavinia A, Abbasian MR, Pouriran R, Noruzian M, et al. Effect of pentoxifylline administration on an experimental rat model of femur fracture healing with intramedullary fixation. Iran Red Crescent Med J 2015;17:e29513. https://doi.org/10.5812/ircmj.29513
43 Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 2006;5:689-702. https://doi.org/10.1038/nrd2030   DOI
44 Kahenasa N, Sung EC, Nabili V, Kelly J, Garrett N, Nishimura I. Resolution of pain and complete healing of mandibular osteoradionecrosis using pentoxifylline and tocopherol: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:e18-23. https://doi.org/10.1016/j.oooo.2011.10.014   DOI
45 Koneru S, Varma Penumathsa S, Thirunavukkarasu M, Vidavalur R, Zhan L, Singal PK, et al. Sildenafil-mediated neovascularization and protection against myocardial ischaemia reperfusion injury in rats: role of VEGF/angiopoietin-1. J Cell Mol Med 2008;12:2651-64. https://doi.org/10.1111/j.1582-4934.2008.00319.x   DOI
46 Kinoshita T, Kobayashi S, Ebara S, Yoshimura Y, Horiuchi H, Tsutsumimoto T, et al. Phosphodiesterase inhibitors, pentoxifylline and rolipram, increase bone mass mainly by promoting bone formation in normal mice. Bone 2000;27:811-7. https://doi.org/10.1016/s8756-3282(00)00395-1   DOI
47 Labib GS, Farid RM. Osteogenic effect of locally applied Pentoxyfilline gel: in vitro and in vivo evaluations. Drug Deliv 2015;22:1094-102. https://doi.org/10.3109/10717544.2014.884193   DOI
48 Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. The 1996 guide for the care and use of laboratory animals. ILAR J 1997;38:41-8. https://doi.org/10.1093/ilar.38.1.41   DOI
49 Delanian S, Depondt J, Lefaix JL. Major healing of refractory mandible osteoradionecrosis after treatment combining pentoxifylline and tocopherol: a phase II trial. Head Neck 2005;27:114-23. https://doi.org/10.1002/hed.20121   DOI
50 Aydin K, Sahin V, Gursu S, Mercan AS, Demir B, Yildirim T. Effect of pentoxifylline on fracture healing: an experimental study. Eklem Hastalik Cerrahisi 2011;22:160-5.