Browse > Article
http://dx.doi.org/10.5125/jkaoms.2013.39.4.161

Effect of loading time on marginal bone loss around hydroxyapatite-coated implants  

Kim, Young-Kyun (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital)
Ahn, Kyo-Jin (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital)
Yun, Pil-Young (Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital)
Kim, Minkyoung (Department of Dental Science, School of Dentistry, Chonnam National University)
Yang, Hong-So (Department of Dental Science, School of Dentistry, Chonnam National University)
Yi, Yang-Jin (Department of Prosthodontics, Section of Dentistry, Seoul National University Bundang Hospital)
Bae, Ji-Hyun (Department of Conservative Dentistry, Section of Dentistry, Seoul National University Bundang Hospital)
Publication Information
Journal of the Korean Association of Oral and Maxillofacial Surgeons / v.39, no.4, 2013 , pp. 161-167 More about this Journal
Abstract
Objectives: The objective of this study is compare the rate of marginal bone resorption around hydroxyapatite-coated implants given different loading times in order to evaluate their stability. Materials and Methods: The study was conducted retrospectively for one year, targeting 41 patients whose treatment areas were the posterior maxilla and the mandible. Osstem TS III HA (Osstem Implant Co., Busan, Korea) and Zimmer TSV-HA (Zimmer Dental, Carlsbad, CA, USA), which employ the new hydroxyapatite coating technique, were used. The patients were divided into two groups - immediate and delayed loading - and the bone level at the time of loading commencement and after one year of loading was measured using periapical radiography. Differences between the groups were evaluated using Mann-Whitney (${\alpha}$=0.05). Results: For all patients as a single group, the survival rate of the implants was 100%, and the mean marginal bone loss was $0.26{\pm}0.59mm$. In comparison of the differences by loading, mean marginal bone loss of $0.32{\pm}0.69mm$ was recorded for the immediate loading group whereas the delayed loading group had mean marginal bone loss of $0.16{\pm}0.42mm$. However, the difference was not significant (P>0.05). Conclusion: Within the limited observation period of one year, predictable survival rates can be expected when using immediately loaded hydroxyapatite-coated implants.
Keywords
Loading; Bone loss;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hjorting-Hansen E, Worsaae N, Lemons JE. Histologic response after implantation of porous hydroxylapatite ceramic in humans. Int J Oral Maxillofac Implants 1990;5:255-63.
2 Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1:11-25.
3 Cochran DL, Buser D, ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, et al. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. Clin Oral Implants Res 2002;13:144-53.   DOI
4 Trisi P, Keith DJ, Rocco S. Human histologic and histomorphometric analyses of hydroxyapatite-coated implants after 10 years of function: a case report. Int J Oral Maxillofac Implants 2005;20:124-30.
5 Cochran DL, Nummikoski PV, Schoolfield JD, Jones AA, Oates TW. A prospective multicenter 5-year radiographic evaluation of crestal bone levels over time in 596 dental implants placed in 192 patients. J Periodontol 2009;80:725-33.   DOI
6 Albrektsson T, Isidor F. Consensus report of session IV. In: Lang NP, Karring T, eds. Proceedings of the 1st European workshop on periodontology. London: Quintessence Publishing; 1994:365-9.
7 Cook SD, Kay JF, Thomas KA, Jarcho M. Interface mechanics and histology of titanium and hydroxylapatite-coated titanium for dental implant applications. Int J Oral Maxillofac Implants 1987;2:15-22.
8 Misch CM. Hydroxylapatite-coated implants. Design considerations and clinical parameters. N Y State Dent J 1993;59:36-41.
9 Lim HS, Kim SG, Oh JS. Comparison of clinical initial stability of hydroxy-apatite coated implant and sandblasted, large-grit and acid-etched implant. J Korean Assoc Maxillofac Plast Reconstr Surg 2012;34:112-6.
10 Thierer T, Davliakos JP, Keith JD Jr, Sanders JJ, Tarnow DP, Rivers JA. Five-year prospective clinical evaluation of highly crystalline HA MP-1-coated dental implants. J Oral Implantol 2008;34:39-46.   DOI
11 Park HU, Yang JH, Lee SH. A study on the effects of early loading on the surrounding bone tissue of the dental implants. J Korean Acad Prosthodont 1993;31:101-27.
12 Schincaglia GP, Marzola R, Giovanni GF, Chiara CS, Scotti R. Replacement of mandibular molars with single-unit restorations supported by wide-body implants: immediate versus delayed loading. A randomized controlled study. Int J Oral Maxillofac Implants 2008;23:474-80.
13 Prosper L, Crespi R, Valenti E, Cappare P, Gherlone E. Five-year follow-up of wide-diameter implants placed in fresh molar extraction sockets in the mandible: immediate versus delayed loading. Int J Oral Maxillofac Implants 2010;25:607-12.
14 Cannizzaro G, Leone M. Restoration of partially edentulous patients using dental implants with a microtextured surface: a prospective comparison of delayed and immediate full occlusal loading. Int J Oral Maxillofac Implants 2003;18:512-22.
15 Whitehead RY, Lucas LC, Lacefield WR. The effect of dissolution on plasma sprayed hydroxylapatite coatings on titanium. Clin Mater 1993;12:31-9.   DOI
16 Calandriello R, Tomatis M. Immediate occlusal loading of single lower molars using Brånemark System Wide Platform TiUnite implants: a 5-year follow-up report of a prospective clinical multicenter study. Clin Implant Dent Relat Res 2011;13:311-8.   DOI
17 Elsyad MA, Al-Mahdy YF, Fouad MM. Marginal bone loss adjacent to conventional and immediate loaded two implants supporting a ball-retained mandibular overdenture: a 3-year randomized clinical trial. Clin Oral Implants Res 2012;23:496-503.   DOI
18 Hermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL. Biologic Width around one- and two-piece titanium implants. Clin Oral Implants Res 2001;12:559-71.   DOI
19 Lee JJ, Rouhfar L, Beirne OR. Survival of hydroxyapatite-coated implants: a meta-analytic review. J Oral Maxillofac Surg 2000;58:1372-9.   DOI
20 Overgaard S, Søballe K, Josephsen K, Hansen ES, Bünger C. Role of different loading conditions on resorption of hydroxyapatite coating evaluated by histomorphometric and stereological methods. J Orthop Res 1996;14:888-94.   DOI
21 Yoshinari M, Ozeki K, Sumii T. Properties of hydroxyapatite-coated Ti-6Al-4V alloy produced by the ion-plating method. Bull Tokyo Dent Coll 1991;32:147-56.
22 Sugiyama T, Miake Y, Yajima Y, Yamamoto K, Sakurai K. Surface observation of thin hydroxyapatite-coated implants at 80 months after insertion. J Oral Implantol 2011;37:273-8.   DOI
23 Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132.
24 Albrektsson T. Direct bone anchorage of dental implants. J Prosthet Dent 1983;50:255-61.   DOI
25 Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002;73:322-33.   DOI
26 Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res 1998;43:192-203.   DOI
27 Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci 1998;106:721-64.   DOI
28 de Groot K, Geesink R, Klein CP, Serekian P. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res 1987;21:1375-81.   DOI
29 Roccuzzo M, Aglietta M, Bunino M, Bonino L. Early loading of sandblasted and acid-etched implants: a randomized-controlled double-blind split-mouth study. Five-year results. Clin Oral Implants Res 2008;19:148-52.   DOI
30 Ioannidou E, Doufexi A. Does loading time affect implant survival? A meta-analysis of 1,266 implants. J Periodontol 2005;76:1252-8.   DOI
31 Vercruyssen M, Quirynen M. Long-term, retrospective evaluation (implant and patient-centred outcome) of the two-implant-supported overdenture in the mandible. Part 2: marginal bone loss. Clin Oral Implants Res 2010;21:466-72.   DOI
32 Cochran DL, Morton D, Weber HP. Consensus statements and recommended clinical procedures regarding loading protocols for endosseous dental implants. Int J Oral Maxillofac Implants 2004;19(Suppl):109-13.
33 Buser D, Mericske-Stern R, Bernard JP, Behneke A, Behneke N, Hirt HP, et al. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res 1997;8:161-72.   DOI