Browse > Article
http://dx.doi.org/10.1007/s13296-018-0124-9

Ultimate Strength of 10 MW Wind Turbine Tower Considering Opening, Stiffener, and Initial Imperfection  

Santos, Ralph Raymond (Department of Civil Engineering, Sangmyung University)
Cho, Sung-Jun (Department of Civil Engineering, Sangmyung University)
Park, Jong-Sup (Department of Civil Engineering, Sangmyung University)
Publication Information
International journal of steel structures / v.18, no.4, 2018 , pp. 1318-1324 More about this Journal
Abstract
This paper evaluates the effects of door opening, collar stiffener, and initial imperfection on the ultimate strength of a 10 MW wind tower. The lower segment of the tower was modeled to investigate the ultimate strength using steel cylindrical shell elements of finite element program ABAQUS. The wind tower was classified into three categories; without opening nor stiffener (C1), with opening but no stiffener (C2), and with opening and stiffener (C3). The C2 and C3 were further divided into long axis and short axis categories depending on the position of the opening. Result from linear and nonlinear analyses shows that the bigger the opening the bigger the reduction in strength and the same thing goes for the initial imperfection ratio or ovality of the shell. Also, there is a significant decreased in strength as the initial imperfection ratio increases by as high as 18.08%.
Keywords
Wind tower; Opening; Stiffeners; Ovality of shells; Finite element analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Starnes, J. (1972). Effect of a slot on the buckling load of a cylindrical shell with a circular cutout. AAIA Journal, 10(2), 227-229.   DOI
2 Tennyson, R. (1968). The effects of unreinforced circular cutouts on the buckling of circular cylindrical shells under axial compression. Journal of Engineering for Industry, 90(4), 541-546.   DOI
3 Yeh, M., Lin, M., & Wu, W. (1999). Bending buckling of an elastoplastic cylindrical shell with a cutout. Engineering Structures, 21(11), 996-1005.   DOI
4 Young, W., Budynas, R., & Sadegh, A. (2011). Roark's formulas for stress and strain (8th ed.). New York: McGraw-Hill.
5 Shariati, M., & Rokhi, M. (2010). Buckling of steel cylindrical shells with an elliptical cutout. International Journal of Steel Structures, 10(2), 193-205.   DOI
6 Dimopoulos, C. A., & Gantes, C. J. (2012). Experimental investigation of buckling of wind turbine tower cylindrical shells with opening and stiffening under bending. Thin-Walled Structures, Elsevier Science Limited, 54, 140-155.   DOI
7 British Standards Institution. (2007). BS EN 1993-1-6:2007: Eurocode 3: Design of Steel Structures-Part 1-6: Strength and Stability of Shell Structures. London: BSI.
8 Brush, D., & Almroth, B. (1975). Buckling of bars, plates, and shells. New York: McGraw-Hill.
9 Det Norske Veritas, A. S. (2013). DNV-RP-C208: Determination of structural capacity by non-linear finite element analysis methods. Oslo: Det Norske Veritas.
10 Dimopoulos, C. A., & Gantes, C. J. (2013). Comparison of stiffening types of the cutout in tubular wind turbine towers. Journal of Constructional Steel Research, Elsevier Science Limited, 83, 62-74.   DOI
11 Jang, M. S., Park, J. S., Lee, Y. W., Kang, S. Y., & Kang, Y. J. (2015). A study of the effect of imperfection on buckling strength in thin cylindrical shells under bending. Journal of Korea Academia-Industrial Cooperation Society, 16(3), 2263-2271.   DOI
12 Dnv, G. L. A. S. (2017). DNVGL-RP-C202: Buckling strength of shells. Oslo: DNV GL.
13 Fereidoon, A., Kolasangiani, K., Akbarpour, A., & Shariati, M. (2013). Study on buckling of steel cylindrical shells with an elliptical cutout under combined loading. Journal of Computational and Applied Research in Mechanical Engineering, 3(1), 13-25.
14 Germanischer Lloyd Renewables Certification. (2012). Guideline for the Certification of Off shore Wind Turbine. Hamburg: GL Renewables Certification.
15 Kougias, L. (2009). A study of the effect of imperfections on buckling capability in thin cylindrical shells under axial loading. Master Thesis, Rensselaer Polytechnic Institute: Hartford.
16 Lancaster, E. R., Calladine, C. R., & Palmer, S. C. (2000). Paradoxical buckling behaviour of a thin cylindrical shell under axial compression. International Journal of Mechanical Sciences, Elsevier Science Limited, 42(5), 843-865.   DOI
17 Reyno, H. (2016). The ultimate strength for the lower segment of tubular steel wind tower with opening. Master Thesis, Sangmyung University: South Korea.
18 Reyno, H., Park, J. S., & Kang, Y. J. (2015). Influence of door opening and collar stiffener on the buckling capacity of cylindrical wind tower. Indian Journal of Science and Technology, 8(25), 1-7.