Browse > Article
http://dx.doi.org/10.5857/RCP.2014.3.2.35

NiFeOx co-catalyzed BiVO4 photoanode for improved photoelectrochemical water splitting  

Kim, Jin Hyun (Pohang University of Science and Technology (POSTECH))
Kang, Hyun Joon (Pohang University of Science and Technology (POSTECH))
Magesh, Ganesan (Ulsan National Institute of Science and Technology (UNIST))
Lee, Jae Sung (Ulsan National Institute of Science and Technology (UNIST))
Publication Information
Rapid Communication in Photoscience / v.3, no.2, 2014 , pp. 35-37 More about this Journal
Abstract
PEC (photoelectrochemical) water splitting for $O_2/H_2$ production is one of the promising but difficult way to utilize solar energy. Among photocatalytic materials for PEC water oxidation, $BiVO_4$ (Eg = 2.4 eV) has been recently intensively studied since it has various advantageous properties. But its maximum efficiency has not been realized owing to kinetic factors - slow water oxidation at surface & insufficient stability. These problems can be simultaneously solved by application of oxygen evolution catalyst (OEC) such as $CoO_x$, Co-Pi, $IrO_x$ etc. Herein we report the first successful application of $NiFeO_x$ OEC on $BiVO_4$, showing good performance compared to other effective OEC applied on $BiVO_4$ under basic conditions. The enhanced activity of OEC loaded $BiVO_4$ has been supported by the surface charge separation efficiency and electrochemical impedance studies.
Keywords
OEC; $BiVO_4$; PEC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Kim, J. W. Jang, H. J. Kang, G. Magesh, J. Y. Kim, J. H. Kim, J. Lee and J. S. Lee, Journal of Catalysis, 2014, 317, 126-134.   DOI   ScienceOn
2 A. Fujishima and K. Honda, Nature, 1972, 238, 1.   DOI
3 G. Magesh, E. S. Kim, H. J. Kang, M. Banu, J. Y. Kim, J. H. Kim and J. S. Lee, J. Mater. Chem. A, 2014, 2, 2044-2049.   DOI   ScienceOn
4 A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253-278.   DOI   ScienceOn
5 M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis and J. M. Spurgeon, J. Phys. Chem. Lett., 2013, 4, 4188-4191.   DOI   ScienceOn
6 T. W. Kim and K.-S. Choi, Science, 2014, 343, 990-994.   DOI   ScienceOn
7 T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 2014.
8 L. Trotochaud, T. J. Mills and S. W. Boettcher, J. Phys. Chem. Lett., 2013, 4, 931-935.   DOI   ScienceOn
9 S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner and A. M. Herring, Energy Environ. Sci., 2011, 4, 5028-5034.   DOI   ScienceOn
10 G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han and C. Li, Angew. Chem. Int., 2014, 53, 7295-7299.   DOI   ScienceOn
11 M. Dinca, Y. Surendranath and D. G. Nocera, PNAS, 2010, 107, 10337-10341.
12 D. K. Zhong and D. R. Gamelin, J. Am. Chem. Soc., 2010, 132, 4202-4207.   DOI   ScienceOn
13 W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu and Z. Zou, Energy Environ. Sci., 2011, 4, 4046-4051.   DOI   ScienceOn
14 D. K. Zhong, S. Choi and D. R. Gamelin, J. Am. Chem. Soc., 2011, 133, 18370-18377.   DOI   ScienceOn
15 K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe and H. Sugihara, J. Phys. Chem. B, 2006, 110, 11352-11360.   DOI