Browse > Article
http://dx.doi.org/10.7840/kics.2013.38A.6.535

Uplink Power Control Scheme for Virtual MIMO Multi-Cell Systems  

Yang, Janghoon (KGIT)
Abstract
This paper considers an uplink power control scheme for a virtual multi-input multi-output (MIMO) multi-cell system where multiple mobile stations with single transmit antenna form a virtual MIMO link. Unlike the conventional approach of the game theoretic formulation to add a power penalty term to improve the performance, a constraint on the total effective interference power is introduced to the maximization of the utility function of the transmission rate with linear receive beamforming. Introducing inertia, we show that the proposed power control is guaranteed to converge. The simulation results verify that the proposed power allocation can significantly improve the performance in an interference limited multi-cell system.
Keywords
power control; virtual MIMO; multi-cell; beamforming; uplink system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. J. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multiple antennas," Bell Lab. Tech. J., vol. 1, no. 2, pp. 41-59, Autumn, 1996.
2 S. Catreux, P. F. Driessen, and L. J. Greenstein, "Simulation results for an interference-limited multiple-input multipleoutput cellular system," IEEE Commun. Lett., vol. 4, no. 11, pp. 334-336, Nov. 2000.   DOI   ScienceOn
3 D. Gesbert, S. G. Kiani, A. Gjendemsjo, and G. E. Oien, "Adaptation, coordination, and distributed resource allocation in interference-limited wireless networks," in Proc. IEEE, vol. 95, no. 12, pp. 2393-2409, Dec. 2007.   DOI   ScienceOn
4 Y. Liang, R. Valenzuela, G. Foschini, D. Chizhik, and A. Goldsmith, "Interference suppression in wireless cellular networks through picocells," in Proc. ACSSC 2007, pp. 1041-1045, Pacific Grove, U.S.A., Nov. 2007.
5 S. Ye and R. S. Blum, "Optimized signaling for MIMO interference systems with feedback," IEEE Trans. Signal Process., vol. 52, no. 11, pp. 2839-2848, Nov. 2003.
6 G. Scutari, D. P. Palomar, and S. Barbarossa, "Competitive design of multiuser MIMO systems based on game theory: A unified view," IEEE J. Sel. Areas Commun., vol. 26. no. 7. pp. 1089-1103, Sep. 2008.   DOI   ScienceOn
7 G. Arslan, M. F. Demirkol, and Y. Song, "Equilibrium efficiency improvement in MIMO interference systems: A decentralized stream control approach," IEEE Trans. Wireless Commun., vol. 6, no. 8. pp. 2984-2993, Aug. 2007.   DOI   ScienceOn
8 R. Chen, J. G. Andrews, R. W. Heath Jr., and A. Ghosh, "Uplink power control in multi-cell spatial multiplexing wireless system," IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2700-2711, July 2007.   DOI   ScienceOn
9 S. Oh, T. L. Olsen, and K. M. Wasserman, "Distributed power control and spreading gain allocation in CDMA data networks," in Proc. INFOCOM 2000, Tel Aviv, Israel, Mar. 2000.
10 C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, "Pricing and power control in a multicell wireless data network," IEEE J. Sel. Areas Commun., vol. 19, no. 10, pp. 1883-1892, Oct. 2001.   DOI   ScienceOn
11 M. J. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, 1994.
12 G. Scutari, D. P. Palomar, and S. Barbarossa, "Optimal linear precoding strategies for wideband noncooperative systems based on game theory-Part 1: Nash equilibrium," IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1230-1249, Mar. 2008.   DOI   ScienceOn
13 J. Yang, H. Chae, Y. Kim, and D. K. Kim, "On the performance of coordinated random beamforming schemes in a two-cell homogeneous interference channel," J. KICS, vol. 36, no. 4, pp. 318-324, Apr. 2011.