Browse > Article

320km Optical Transmission using EDFA and Raman amplifier for 10Gbit/s 128 Channel DWDM Signals  

Choi, Bo-Hun (동아대학교 신소재물리학과)
Abstract
320km optical transmission link for 128 channel DWDM (dense wavelength-division-multiplexing) signals is simulated and fabricated. An optical fiber amplifier for the link is composed of a distributed Raman amplifier and dual C/L-band EDFAs which are optimized for the performances of an optical amplifier obtained from the simulation. Gain and NF of the optimized EDFAs are above 19dB and below 7.5dB, respectively. The resultant OSNRs (optical signal to noise ratios) of the link are average 25dB on each band.
Keywords
Erbium-Doped Fiber Amplifier (EDFA); Raman Amplifier; Wavelength Division Multiplexing; Optical Signal to Noise Ratio (OSNR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Freund, L. Molle, F. Raub, C. Caspar, M. Karkri, Ch. Weber, 'Triple-(S/C/L)-band WDM transmission using erbium-doped fibre amplifiers,' 31st European Conference on Optical Communication(ECOC), Vol.1, pp.69-70, 2005   DOI
2 J. D. Downie, M. Sauer, J. Hurley, '1500 km transmission over NZ-DSF without in-line or post-compensation of dispersion for 38/spl times/10.7 Gbit/s channels,' Electronics Letters, Vol.42, No.11, pp.650-652, 2006   DOI
3 B.-H. Choi, C.-B. Kim, and J. Ko 'An all-optically gain-controlled two-stage amplifier using two independent feedback loops', IEEE Photonics Technology Letters, Vol.19, No.18, pp.1353-1355, Sep., 2007   DOI   ScienceOn
4 B.-H. Choi, H.-H. Park, and M.-J. Chu, 'New pump wavelength of 1540nm-band for Long-Wavelength- Band Erbium-Doped Fiber Amplifier (L-band EDFA)' IEEE Journal of Quantum Electronics, Vol.39, No.10, pp.1272-1280, 2003   DOI   ScienceOn
5 B. Pedersen, B. A. Thompson, S. Zemon, W. J. Miniscalco, and T. Wei, 'Power requirement for erbium-doped fibre amplifiers pumped in the 800, 980, and 1480nm bands,' IEEE Photonics Technology Letters, Vol.4, No.1, pp.46-49, 1992   DOI   ScienceOn
6 D. M. Baney and J.Stimple, 'WDM EDFA gain characterization with a reduced set of saturating channels,' IEEE Photonics Technology Letters, Vol.8, No.12, pp.1615-1617, 1996   DOI   ScienceOn
7 A. H. Gnauck, and P. J. Winzer, 'OpticalPhase-Shift -KeyedTransmission,' J. Lightwave Technology, Vol.23, No.1, pp.115-130, 2005   DOI   ScienceOn
8 U.-C. Ryu, K. Oh, W. Shin, and U. C. Paek, 'Inherent enhancement of gain flatness and achievement of broad gain bandwidth in erbium-doped silica fiber amplifiers,' IEEE J. Quantum Electronics, Vol.38, No.2, pp.149-161, 2002   DOI   ScienceOn
9 C. X. Yu, S. Chandrasekhar, T. Zhou, D. T. Neilson, '0.8 bit/s/Hz spectral efficiency at 10 Gbit/s via vestigial-sideband filtering,' Electronics Letters Vol.39, No.2, pp.225-227, 2003   DOI   ScienceOn
10 5. S. N. Knudsen, B. Zhu, L. E. Nelson, M. O. Pederson, D. W. Peckham, and S. Stulz, '420 Gbit/ s 4210 Gbit/ sWDM transmission over 4000 km of UltraWave fibre with 100 km dispersion-managed spans and distributed Raman amplification,' Electron. Lett. No.15, pp.965–966, 2001   DOI   ScienceOn
11 A. Mori, H. Masuda, K. Shikano, and M. Shimizu, 'Ultra-wide-band tellurite-based fiber Raman amplifier,' J. of Lightwave Technology, Vol.21, No.5, pp.1300-1306, 2003   DOI   ScienceOn
12 J. B. Leroy, P. Marmier, C. Laval and O. Gautheron, '32 x 10 Gbit/s transmission over 8000km using hybrid Raman-Erbium doped fiber optical amplifiers', OFC'00, TuJ4-2, USA, 2000