Browse > Article

Modified Cubic Convolution Scaler for Multiformat Conversion in a Transcoder  

Yoo, Young-Joe (세종대학교, 정보통신연구소, 정보통신공학과)
Seo, Ju-Heon (세종대학교, 정보통신연구소, 정보통신공학과)
Han, Jong-Ki (세종대학교, 정보통신연구소, 정보통신공학과)
Abstract
We derive a modified version of cubic convolution interpolation for the enlargement or reduction of digital images by arbitrary scaling factors. The proposed scaling scheme is used to resize various format pictures in the transcoding system, which transforms the bitstream compressed at a bit rate, such as the HD bitstream, into another bit rate stream. In many applications such as the transcoder, the resolution conversion is very important for changing the image size while the scaled image maintains high quality. We focus on the modification of the scaler kernel according to the relation between formats of the original and the resized image. In the modification, various formats defined in MPEG standards are considered. We show experimental results that demonstrate the effectiveness of the proposed interpolation method.
Keywords
Transcoder; Cubic convolution scaler;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Shanableh and M. Ghanbari, 'Heterogeneous video transcoding to lower spatio-temporal resolutions and different encoding formats,'IEEE Trans. Multimedia 2, 101-110 (June 2000)   DOI   ScienceOn
2 B. Shen, I. K. Sethi, and B. Vasudev, 'Adaptive motion vector resampling for compress video downscaling,' IEEE Trans. Circuits Syst. Video Technol. 9, 929-936 (Sep. 1999)   DOI   ScienceOn
3 C. Yim and M. A. Isnardi, 'An efficient method for DCT-domain image resizing with mixed field/frame-mode macroblocks,' IEEE Trans. Circuits Syst. Video Technol. 9, 696-700 (Aug. 1999)   DOI   ScienceOn
4 W. K. Pratt, Digital Image Processing, John Wiley and Sons, New York (1991)
5 R. G. Keys, 'Cubic convolution interpolation for digital image rocessing,' IEEE Trans. Acoust., Speech, Signal Process. 29, 1153-1160 (Dec. 1981)   DOI
6 H. S. Hou and H. C. Andrews, 'Cubic splines for image interpolation and digital filtering,' IEEE Trans. Acoust., Speech, Signal Process. 26, 508–517 (1978)
7 G. Ramponi, 'Warped distance for space-variant linear image nterpolation,' IEEE Trans. Image Process. 8, 629-639 (May 1999)   DOI   ScienceOn
8 H. Hwang, 'Interlaced to progressive scan conversion for HD-MAC application,' IEEE Trans. Consum. Electron. 38(3), 151-156 (Aug. 1992)   DOI   ScienceOn
9 M. Karczewicz and M. Gabbouj, 'Robust B-spline image modeling with application to image processing,' EEE Trans. Image Process. 7, 912-917 (June 1998)   DOI   ScienceOn
10 M. H. Lee, J. H. Kim, J. S. Lee, K. K. Ryu, and D. I. Song, 'A new algorithm for interlaced to progressive scan conversion based on directional corrections and its IC design,' IEEE Trans. Consum. Electron. 40(2), 119-129 (May 1994)   DOI   ScienceOn
11 M. Unser, A. Aldroubi, and M. Eden, 'Enlargement or reduction of digital images with minimum loss of information,' IEEE Trans. Image Process. 4, 247–258 (Mar. 1995)
12 N. Merhav, 'Multiplication-free approximation algorithms for compressed domain linear operations on images,' IEEE Trans. Image Process. 8, 247–254 (Feb. 1999)
13 ISO/IEC and ITU-T, 'Information technology-Generic coding of moving pictures and associated audio: Video,' ISO/IEC/JTC1/SC29/WG11, N0801, Apr. 1995
14 G. D. L. Reyes, A. R. Reibman, S. F. Chang, and J. C. I. Chuang, 'Error resilient transcoding for video over wireless channels,' IEEE J. elected Area Commun. 18, 1063-1074 (June 2000)   DOI   ScienceOn
15 M. Karlsson, P. Pohjala, H. Rantanen, and S. Kalli, 'Evaluation of scanning rate up conversion algorithms; subjective testing of interlaced to progressive conversion,' IEEE Trans. Consum. Electron. 38(3), 162-167 (Aug. 1992)   DOI   ScienceOn
16 S. S. Rifman, 'Digital rectification of ERTS multispectral imagery,' Proc. Symp. Significant Results Obtained from ERTS-1 (NASA SP-327) I (Sec. B), 1131-1142 (1973)
17 M. Unser, A. Aldroubi, and M. Eden, 'Fast B-spline transforms for continuous image representation and interpolation,' IEEE Trans. Pattern Anal. Mach. Intell. 13, 277-285 (Mar. 1991)   DOI   ScienceOn
18 R. Bernstein, 'Digital image processing of Earth observation sensor data,' IBM J. Res. Dev. 20, 40-57 (1976)   DOI   ScienceOn
19 S. Liu and A. C. Bovik, 'Local bandwidth constrained fast inverse motion compensation for DCT-domain video transcoding,' IEEE Trans. Circuits Syst. Video Technol. 12, 309–319 (May 2002)
20 H. J. Kim and C. C. Li, 'Lossless and lossy image compression using biorthognal wavelet transforms with multiplierless operations,' IEEE Trans. Circuits Syst. II: Analog digital signal Process 45, 1113-1118 (Aug. 1998)   DOI   ScienceOn
21 J. Youn, M. T. Sun, and C. W. Lin, 'Motion vector refinement for high performance transcoding,' IEEE Trans. Multimedia 1, 30-40 (Mar. 1995)   DOI
22 S. K. Park and R. A. Schowengerdt, 'Image reconstruction by arametric cubic convolution,' Comput. Vis. Graph. Image Process. 23, 258–272 (Sep. 1983)
23 H. Sun, W. Kwok, and J. W. Zdepski, 'Architectures for MPEG ompressed bitstream scaling,' IEEE Trans. Circuits Syst. Video Technol. 6, 191-199 (Apr. 1999)   DOI   ScienceOn
24 R. Li, N. K. Chung, K. T. Mo, D. M. Fisher, and V. Wong, 'A lexible display module for DVD and set-up box applications,' IEEE Trans.Consum. Electron. 43(3), 496-503 (Aug. 1997)   DOI   ScienceOn
25 J. Song and B. L. Yeo, 'A fast algorithm for DCT-domain inverse motion compensation based on shared information in a macroblock,' IEEE Trans. Circuits Syst. Video Technol. 10, 767–775 (Aug. 2000)