Browse > Article
http://dx.doi.org/10.5345/JKIBC.2018.18.3.267

Strength and Efflorescence Characteristics of Alkali-Activated Slag Cement Mortar with Red Mud according to Curing Conditions  

Kang, Suk-Pyo (Department of Architecture, Woosuk University)
Hwang, Byoung-Il (Department of Construction Engineering, Woosuk University)
Publication Information
Journal of the Korea Institute of Building Construction / v.18, no.3, 2018 , pp. 267-275 More about this Journal
Abstract
This study is to investigate the effect of various temperature and humidity conditions on the strength and efflorescence of alkali activated slag cement(AAS) using the red mud. As a result of examining the strength and efflorescence characteristics of AAS mixed with red mud according to the curing conditions, The compressive strength and flexural strength were the highest at 28 days, but the absorption rate, efflorescence area and soluble $Na^+$ elution were lowest in standard wet curing compared to the air curing, high temperature curing and low temperature curing.
Keywords
curing condition; alkali-activated slag cement; red mud; strength; efflorescence;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kang SP, Kwon SJ. Effects of red mud and alkali-activated slag cement on efflorescence in cement mortar. Construction and Building Materials. 2017 Feb;133:459-67.   DOI
2 Moon KJ. Properties of non-sintered cement and concrete recycled with industrial waste. [doctor's thesis]. [Chongbuk (Korea)]: Chongbuk National Uviersity; 2003. 61-172 p.
3 Kang SP, Kwon SJ. Strength and pore characteristics of alkali-activated slag-red mud cement mortar used polymer according to red mud content. Journal of the Korea Institute for Structural Maintenance and Inspection. 2016 Mar;20(2):26-33.   DOI
4 Kang SP, Kang HJ. Pore and efflorescence characteristics of alkali activated slag-red mud cement mortar depending on red mud. Journal of Korea Institute of Building Construction. 2017 Jan;17(3):261-8.   DOI
5 Moon GD, Choi YJ. Comparative study of the test methods for efflorescence of building materials. Journal of the Architectural Institute of Korea Structure & Construction. 2012 Apr.;32(1): 217-8.
6 Pan Z, Cheng L, Lu Y, Yang N. Hydration products of alkali-activated slag-red mud cementitious material. Cement and Concrete Research. 2002 Sep;32(3):357-62.   DOI
7 Pan Z, Li D, Yu J, Yang N. Properties and microstructure of the hardened alkali-activated red mud-slag cementitious material. Cement and Concrete Research. 2003 2;33(9):1437-41.   DOI
8 Allahverdi A, Najafi Kani E, Hossain KM, Lachemi M. Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing Series in Civil and Structural Engineering. 2014. Chapter 17. Method to control efflorescence in alkali-activated cement-based materials; p. 463-83.
9 Hyung WG, Kim JH, Park SJ. Properties of non-sintered cement mortar using alkali and sulfate mixed stimulants according to curing method. Journal of Korea Institute of Building Construction. 2015 Jun;27(3):236-43.
10 Hyung WG, Kim JH, Park SJ. Properties of alkali-activated cement mortar by curing method. Journal of Korea Institute of Building Construction. 2014 Apr;26(2):117-24.
11 Jang SY, Jeong JY, Choi YC, Kim SI, Jeong SH, Effects of replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement pastes. Journal of the Korea Concrete Institute. 2015 Apr:115-25.
12 Rabbat BG, Building Code Requirements for Structural Concrete (ACI 318-95)and Commentary (ACI 318R-95). Washingtion, D.C: Famingtion hills; 1995. 373p.
13 Lee MS. Concrete's water tightness evaluation based on water absorption coefficient theory. Journal of the Architectural Institute of Korea Structure & Construction. 2001 Feb;17(2):75-83.
14 Oh YH, Kim YC, Kim EG, Kim GS. The study of correlation between compressive strength and flexural bending strength of concrete pavement. Journal of the Korea Concrete Institute. 2007 Nov;19(2):1025-8.