Browse > Article
http://dx.doi.org/10.7848/ksgpc.2022.40.4.305

Improved Height Determination Using a Correction Surface by Combining GNSS/Leveling Co-points and Thailand Geoid Model 2017  

Dumrongchai, Puttipol (Dept. of Civil Engineering, Chiang Mai University)
Buatong, Titin (Dept. of Survey Engineering, Chulalongkorn University)
Satirapod, Chalermchon (Dept. of Survey Engineering, Chulalongkorn University)
Yun, Seonghyeon (Dept. of Civil Engineering, Chiang Mai University)
Publication Information
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography / v.40, no.4, 2022 , pp. 305-313 More about this Journal
Abstract
The evolution of the GNSS (Global Navigation Satellite System) technology has enhanced positioning performance in terms of positioning accuracy and time efficiency. The technology makes it possible to determine orthometric heights at a few centimeter accuracies by transforming accurate ellipsoid heights if an accurate geoid model has been employed. This study aims to generate a correction surface using GNSS/leveling co-points and a local geoid model, Thailand Geoid Model 2017 (TGM2017), through the Kriging interpolation method in a small local area. Combining the surface and TGM2017 significantly improves height transformation with the 1-cm RMSE (Root Mean Square Error) fit of 10 GNSS/leveling reference points and a mean offset of +0.1 cm. The evaluation of the correction surface at 5 GNSS/leveling checkpoints shows the RMSE of 1.0 cm, which is 82.6 percent of accuracy improvements. The GNSS leveling method can possibly be used to replace a conventional leveling technique at a few centimeter uncertainties in the case of small areas with clear-sky and high satellite visibility environments.
Keywords
Geoid; Thailand Geoid Model 2017; Orthometric Height; Correction Surface; Kriging;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Charoenkalunyuta, T., Satirapod, C., Keitniyomrung, V., and Yomwan, P. (2019), Performance of network-based RTK GNSS for the cadastral survey in Thailand, International Journal of Geoinformatics, Vol. 15, No. 3, pp. 13-19
2 Erol, B. and Celik, R.N. (2004), Modelling local GPS levelling geoid with the assessment of Inverse Distance Weighting and Geostatistical Kriging Methods, In 20th International Society for Photogrammetry and Remote Sensing (ISPRS) Congress-2004, 12-23 July, Istanbul, Turkey.
3 Heiskanen, W.A. and Moritz, H. (1967), Physical Geodesy, W. H. Freeman and Company, San Francisco, USA.
4 Jung, S.C., Kwon, J.H., and Lee, J. (2018), Accuracy analysis of GNSS-derived orthometric heights on the leveling loop disconnected area, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 36, No. 1, pp. 1-8. https://doi.org/10.7848/ksgpc.2018.36.1.1   DOI
5 Li, Y.S. and Ning, F.S. (2019), Research into GNSS levelling using network RTK in Taiwan, Survey Review, Vol. 51, No. 364, pp. 17-25. https://doi.org/10.1080/00396265.2017.1340130.   DOI
6 Jongrujinan, T. and Satirapod. C. (2020), Stochastic modeling for VRS network-based GNSS RTK with residual interpolation uncertainty, Journal of Applied Geodesy, Vol. 14, Np. 3, pp. 317-325. https://doi.org/10.1515/jag-2020-0007   DOI
7 Soycan, M. (2013), Analysis of geostatistical surface model for GPS height transformation: a case study in Izmir territory of Turkey, Geodetski vestnik, Vol. 57, No. 4, pp. 702-718. https://doi.org/10.15292/geodetski-vestnik.2013.04.702-718   DOI
8 Moritz, H. (1980), Advanced physical geodesy, Herbert Wichmann Verlag, Karlsruhe.
9 Nahavandchi, H. and Soltanpour, A. (2006), Improved determination of heights using a conversion surface by combining gravimetric quasi-geoid/geoid and GPS-levelling height differences, Studia Geophysica et Geodaetica, Vol. 50, No. 2, pp. 165-180. https://doi.org/10.1007/s11200-006-0010-3   DOI
10 Panumastrakul E., Simons W.J.F. and Satirapod C. (2012), Modeling Post-Seismic Displacements in Thai Geodetic Network due to the Sumatra-Andaman and Nias Earthquakes Using GPS Observations, Survey Review, Vol. 44, No. 324, pp. 72 - 77.   DOI
11 Gilardoni, M., Reguzzoni, M., and Sampietro, D. (2016), GECO: a global gravity model by locally combining GOCE data and EGM2008, Studia Geophysica et Geodaetica, Vol. 60, pp. 228-247. https://doi.org/10.1007/s11200-015-1114-4   DOI
12 Rizos, C. and Satirapod, C. (2011), Contribution of GNSS CORS infrastructure to the mission of modern geodesy and status of GNSS CORS in Thailand, Engineering Journal, Vol. 15, No. 1, pp. 25-42. https://doi.org/10.4186/ej.2011.15.1.25   DOI
13 Anderson, O., Knudsen, P., and Stenseng, L. (2015), The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, In: Jin S., Barzaghi R. (eds.), International Association of Geodesy Symposia (IGFS) 2014, Springer, Cham., pp. 111-121. https://doi.org/10.1007/1345_2015_182   DOI
14 Daya, A. A. and Bejari, H. (2015), A comparative study between simple Kriging and ordinary Kriging for estimating and modeling the Cu concentration in Chehlkureh deposit, SE Iran, Arabian Journal Geosciences, Vol. 8, No. 8, pp. 6003-6020. https://doi.org/10.1007/s12517-014-1618-1   DOI
15 Hein, G.W. (2020), Status, perspectives and trends of satellite navigation, Satellite Navigation, Vol. 1, No. 1, pp. 1-12. https://doi.org/10.1186/s43020-020-00023-x   DOI
16 Featherstone, W. E., McCubbine, J. C., Brown, N. J., Claessens, S. J., Filmer, M. S. and Kirby, J. F. (2018), The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates, Journal of Geodesy, 92, 149-168. https://doi.org/10.1007/s00190-017-1053-7.   DOI
17 Forsberg, R. and Tscherning, C.C. (2014), An Overview Manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs, National Space Institute (DTU-Space) and Niels Bohr Institute, U. of Copenhagen, Denmark, 68p.
18 Sun, H. X., Li, L. L., Ding, X. W., and Guo, B. X. (2016), The precise multimode GNSS positioning for UAV and its application in large scale photogrammetry, Geo-Spatial Information Science, Vol. 19, No. 3, pp. 188-194. https://doi.org/10.1080/10095020.2016.1234705   DOI
19 Thongtan, T., Sawatdiaree, S., and Satirapod, C. (2022), GNSS time and frequency transfers through national positioning, navigation and timing infrastructure, Journal of Applied Geodesy, Vol. 16, No. 2, pp. 123-130. https://doi.org/10.1515/jag-2021-0061   DOI
20 Dumrongchai, P., Srimanee, C., Duangdee, N., and Bairaksa, J. (2021), The determination of Thailand Geoid Model 2017 (TGM2017) from airborne and terrestrial gravimetry, Terrestrial, Atmospheric and Oceanic Sciences, Vol. 32, No. 5, pp. 857-872. https://doi.org/10.3319/TAO.2021.08.23.01.   DOI
21 Kriengkraiwasin, S., Charoenphon, C., Butwong, K., Kovitpongkajorn, V., Yomwan, P., Thongtan, T., and Satirapod, C. (2021), Unification of GNSS CORS Coordinates in Thailand, Survey Review, pp. 1-9. https://doi.org/10.1080/00396265.2021.1987002.   DOI