Browse > Article
http://dx.doi.org/10.7848/ksgpc.2015.33.5.397

Digital Map Updates with UAV Photogrammetric Methods  

Lim, Soo Bong (Department of Civil Engineering, Chungnam National University)
Seo, Choon Wook (Department of Civil Engineering, Chungnam National University)
Yun, Hee Cheon (Department of Civil Engineering, Chungnam National University)
Publication Information
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography / v.33, no.5, 2015 , pp. 397-405 More about this Journal
Abstract
Currently, Korea's digital maps are being produced through traditional aerial photogrammetry methods. Aerial photogrammetry is the most economical way to produce a map of a wide area. However, timely survey is not allowed depends on weather condition and it is inefficient for small area surveying in economic point of view. Therefore, it costs too much and needs long time to produce a map for various small areas where are terrestrial changes for updating the map. In contrast, UAV photogrammetry is possible to work even in cloudy weather because of shooting at low altitude below the clouds. It also has excellent mobility and shoot quickly and well suited for small-scale mapping in several places by low cost. In this study, we produced an ortho-photo and digital map with the UAV photogrammetry method using SIFT and SfM algorithm and verified its accuracy to evaluate the applicability for future digital map updates. The accuracy was verified by comparing the results of the ground survey for check points selected on the digital map. Test results show small errors at ±2.6cm in X coordinates, ±2.8cm in Y coordinates and ±5.8cm in height and we could find a possibility that UAV photogrammetry would be fully applicable for digital map updating.
Keywords
Digital Map Updates; UAV Photogrammetry; SIFT; SfM;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Verhoeven, G. (2011), Taking computer vision aloftarchacological three-dimensional reconstruction from aerial photographs with photoscan, Archalogical Prospection, Vol. 18, pp. 67-73.   DOI
2 Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., and Reynolds, J.M. (2012), Structure-from-motion photogrammetry: a low-cost, effective tool for geoscience applications, Geomorphology, Vol. 79, pp. 300-314.
3 Yeu, B. M. and Schenk, T. (2001), Modern Digital Photogrammetry, Munundang Inc., Seoul.
4 Barazzetti, L., Remondino, F., Scaioni, M., and Brumana, R. (2010), Fully automatic UAV image-based sensor orientation, Proceeding of ISPRS Commission I Mid-Term Symposium “Image Data Acquisition-Sensors & Platform”, Vol. 12.
5 Doneus, M., Verhoeven, G., and Fera M. (2011), From deposit to point cloud - a study of low-cost computer vision approaches for the straightforward documentation of archalogical excavations, Geoinformatics, Vol. 6, pp. 81-88.
6 Eisenbeiss, H. (2011), The Potential of Unmanned Aerial Vehicles for Mapping, Photogrammetrische Woche 2011, Dieter Fritsch(Ed.), Wichmann Verlag, Heidelberg, pp. 135-145.
7 Jung, S.H., Lim, H.M., and Lee, J. K. (2009), Analysis of the UAV photogrammetric method using digital camera, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 27, No. 6, pp. 741-747. (in Korean with English abstract)
8 Jung, S.H., Lim, H.M., and Lee, J.K. (2010), Acquisition of 3D spatial information using UAV photogrammetric method, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 28, No. 1, pp. 161-168. (in Korean with English abstract)
9 Kim, D.I., Song, Y.S., Kim, G.H., and Kim, C.W. (2014), A study on the application of UAV for Korean land monitoring, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 1, pp. 29-38. (in Korean with English abstract)   DOI
10 Lowe, D. (2004), Distinctive image features from scaleinvariant keypoints, International Journal of Computer Vision, pp. 1-28.
11 Snavely, N, Seitz, S.N., and Szeliski, R. (2006), Photo tourism:exploring image collections in 3D, ACM Transaction on Gtaphics, NewYork, pp. 1-12.