Browse > Article
http://dx.doi.org/10.7853/kjvs.2021.44.1.21

Antimicrobial resistance of Pseudomonas aeruginosa isolated from dogs and cats  

Cho, Jae-Keun (Health & Enviornmental Research Institute of Daegu)
Kim, Jeong-Mi (Health & Enviornmental Research Institute of Daegu)
Kim, Kyung-Hee (Health & Enviornmental Research Institute of Daegu)
Lim, Hyun-Suk (Health & Enviornmental Research Institute of Daegu)
Yang, Chang-Ryoul (Health & Enviornmental Research Institute of Daegu)
Publication Information
Korean Journal of Veterinary Service / v.44, no.1, 2021 , pp. 21-26 More about this Journal
Abstract
The aim of this study was to investigate the antimicrobial resistance among Pseudomonas (P.) aeruginosa isolated from dogs and cats. A total of 45 (6.2%) P. aeruginosa was isolated from 710 dogs and 21 cats with clinical signs. Resistance to one or more of the antimicrobials tested was observed in 26 (57.8%) P. aeruginosa. Resistance to cefepime was the most frequent (44.4%), followed by ofloxacin (22.2%), levofloxacin (17.8%), norfloxacin (8.9%), ciprofloxacin (6.7%), ceftazidime, aztreonam, colistin, polymixin B and gentamicin (4.4%, respectively), while resistance to piperacillin/tazobactam, imipenem, tobramycin and amikacin was 2.2%, respectively. All isolates were susceptibility to doripenem and meropenem. Antimicrobial susceptibility testing should be a crucial step in selection of appropriate antimicrobial therapy in veterinary medicine. Also, the prudent use of antimicrobials and continuous monitoring for companion animals are required.
Keywords
Dogs; Cats; Pseudomonas aeruginosa; Antimicrobial resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bourely C, Cazeau G, Jarrige N, Leblond A, Madec JY, Haenni M, Gay E. 2019. Antimicrobial resistance patterns of bacteria isolated from dogs with otitis. Vet Microbiol 235: 280-284.   DOI
2 Chamberland S, L'Ecuyer J, Lessard C, Bernier M, Provencher P, Bergeron MG. 1992. Antibiotic susceptibility profiles of 941 gram-negative bacteria isolated from septicemic patients throughout Canada. The canadian study group. Clin Infect Dis 15: 615-628.   DOI
3 Chastre J, Trouillet JL. 2000. Problem pathogens (Pseudomonas aeruginosa and Acinetobacter). Semin Respir Infect 15: 287-298.   DOI
4 Cho JK, Kim JH, Kim JM, Park CK, Kim KS. 2013. Antimicrobial resistance and distribution of resistance gene in Enterobacteriaceae and Pseudomonas aeruginosa isolated from dogs and cats. Korean J Vet Res 36: 171-180.   DOI
5 CLSI. Clinical and Laboratory Standards Institute. 2017. Performance standards for antimicrobial susceptibility testing; 27th ed. CLSI supplement M100. Wayne, PA, USA.
6 Eliasi UL, Sebola D, Oguttu JW, Qekwana DN. 2020. Antimicrobial resistance patterns of Pseudomonas aeruginosa isolated from canine clinical cases at a veterinary academic hospital in South Africa. J S Afr Vet Assoc 22; e1-e6.
7 Giguere S, Prescott JF, Dowling PM. 2013: Antimicrobial Therapy in Veterinary Medicine. 5th Edition, Wiley Blackwell.
8 Harada K, Arima S, Niina A, Kataoka Y, Takahashi T. 2012. Characterization of Pseudomonas aeruginosa isolates from dogs and cats in Japan: current status of antimicrobial resistance and prevailing resistance mechanisms. Microbiol Immunol 56: 123-127.   DOI
9 Hariharan H, Coles M, Poole D, Lund L, Page R. 2006. Update on antimicrobial susceptibilities of bacterial isolates from canine and feline otitis externa. Can Vet J 47: 253-255.
10 Lin D, Foley SL, Qi Y, Han J, Ji C, Li R, Wu C, Shen J, Wang Y. 2012. Characterization of antimicrobial resistance of Pseudomonas aeruginosa isolated from canine infections. J Appl Microbiol 113: 16-23.   DOI
11 Linder JA, Huang ES, Steinman MA, Gonzales R, Stafford RS. 2005. Fluoroquinolone prescribing in the United States: 1995 to 2002. Am J Med 118: 259-268.   DOI
12 Livermore DM, Winstanley TG, Shannon KP. 2001: Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J Antimicrob Chemother 48(Suppl. S1): 87-102.   DOI
13 Markey BF, Leonard M, Archambault A, Maguire CD. 2013. Clinical veterinary microbiology. 2nd ed., Mosby Elsevier, Edinburgh, London, New York, Oxford, Philadelphia, St. Louis, Sydney, Toronto, pp. 275-284.
14 농림축산식품부. 2016. 축산분야(반려동물 포함) 항생제 내성 관리 계획.
15 Arais LR, Barbosa AV, Carvalho CA, Cerqueira AM. 2016. Antimicrobial resistance, integron carriage, and gyrA and gyrB mutations in Pseudomonas aeruginosa isolated from dogs with otitis externa and pyoderma in Brazil. Vet Dermatol 27: 113-7e31.   DOI
16 Martin Barrasa JL, Lupiola Gomez P, Gonzalez Lama Z, Tejedor Junco MT. 2000. Antibacterial susceptibility patterns of Pseudomonas strains isolated from chronic canine otitis externa. J Am Anim Hosp Assoc 43: 307-312.   DOI
17 Mekic S, Matanovic K, Seol B. 2011. Antimicrobial susceptibility of Pseudomonas aeruginosa isolates from dogs with otitis externa. Vet Rec 169: 125.   DOI
18 Normand EH, Gibson NR, Taylor DJ, Carmichael S. Reid SW 2000. Trends of antimicrobial resistance in bacterial isolates from a small animal referral hospital. Vet Rec 146: 151-155.   DOI
19 Park SY, Bae SG, Kim JT, Oh TH. 2017. Identification and antimicrobial susceptibility of bacteria isolated from dogs with chronic otitis externa. J Vet Clin 34: 23-26.   DOI
20 Park YJ, Oh JY, Park SW, Sum SU, Song WK, Chae JC, Park HM. 2020. Antimicrobial resistance and novel mutations detected in the gyrA and parC genes of Pseudomonas aeruginosa strains isolated from companion dogs. BMC Vet Res 16: 111.   DOI
21 Pedersen K, Pedersen K, Jensen H, Finster K, Jensen VF, Heuer OE. 2007. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs. J Antimicrob Chemother 60: 775-781.   DOI
22 Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. 2007. Global challenger of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51: 3471-3484.   DOI
23 Petersen AD, Walker RD, Bowman MM, Schott HC. 2002. Frequency of isolation and antimicrobial susceptibility patterns of Staphylococcus intermedius and Pseudomonas aeruginosa isolates from canine skin and ear samples over a 6-year period (1992-1997). J Am Anim Hosp Assoc 38: 407-413.   DOI
24 Pintaric S, Kresimir Matanovic K, Martinec BS. 2017. Fluoroquinolone susceptibility in Pseudomonas aeruginosa isolates from dogs-comparing disk diffusion and microdilution methods. Veterinarski Arhiv 87: 291-300.
25 Rubin J, Walker RD, Blickenstaff K, Bodeis-Jones S, Zhao S. 2008. Antimicrobial resistance and genetic characterization of fluoroquinolone resistance of Pseudomonas aeruginosa isolated from canine infections. Vet Microbiol 131: 164-172.   DOI
26 Yukawa S, Tsuyuki Y, Sato T, Fukuda A, Usui M, Tamura Y. 2017. Antimicrobial resistance of Pseudomonas aeruginosa isolated from dogs and cats in primary veterinary hospitals in Japan. Jpn J Infect Dis 70: 461-463.   DOI
27 Seol B, Naglic T, Madic J, Bedekovic M. 2002. In Vitro Antimicrobial Susceptibility of 183 Pseudomonas aeruginosa strains isolated from dogs to selected antipseudomonal agents. J Vet Med B Infect Dis Vet Public Health 49: 188-192.   DOI
28 Wildermuth BE, Griffin CE, Rosenkrantz WS, Boord MJ. 2007. Susceptibility of Pseudomonas isolates from the ears and skin of dogs to enrofloxacin, marbofloxacin and ciprofloxacin. J Am Anim Hosp Assoc 43: 337-341.   DOI