Browse > Article
http://dx.doi.org/10.13160/ricns.2020.13.3.87

Investigation of Physicochemical Properties of Mo Carbide Utilizing Electron Spectroscopy  

Jeong, Eunkang (Department of Chemistry, Pukyong National University)
Park, Juyun (Department of Chemistry, Pukyong National University)
Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
Publication Information
Journal of Integrative Natural Science / v.13, no.3, 2020 , pp. 87-91 More about this Journal
Abstract
Molybdenum carbide (MoCx) thin films (TFs) were deposited by reactive radio frequency (rf) magnetron co-sputtering in high vacuum chamber. We compared the properties of MoCx thin films as the rf power changed on C target. The result of alpha step measurement showed that the thickness of the MoCx TFs varied from163.3 to 194.86 nm as C power was increased from 160 to 200 W. The crystallinity of MoCx such as b-Mo2C, Mo2C, and diamond like carbon (DLC) structures were observed by XRD. The oxidation states of Mo and C were determined using high resolution XPS spectra of Mo 3d and C 1s were deconvoluted. Molybdenum was consisted of Mo, Mo4+, and Mo6+ species. And C was deconvoluted to C-Mo, C, C-O, and C=O species.
Keywords
Moc; Thin film; co-sputtering; DLC; XPS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. C. Tripathi, M. Kumar, and D. Kumar, Bull. Mater. Sci., 34, 1611 (2011).   DOI
2 Q. Liu, X.P. Wang, F.J. Liang, J.X. Wang, and Q.F. Fang, Mater. Res. Bull., 41, 1430 (2006).   DOI
3 E. Bertran, C. Corbella, A. Pinyol, M. Vives, and J.L. Andujar, Diam. Relat. Mater., 12, 1008 (2003).   DOI
4 X. He, W. Li, and H. Li, Mater. SCI. Eng. B-Adv., 31, 269 (1995).   DOI
5 Z.G. Yuan, J.F. Yang, Z.J. Cheng, X.P. Wang, and Q.F. Fang, Surf. Coat. Tech., 231, 14 (2013).   DOI
6 A. Villa, S. Campisi, C. Giordano, K. Otte, and L. Prati, ACS Catal., 2, 1377 (2012).   DOI
7 A. Hanif, T. Xia., A. P. E. York, J. Sloan, and M. L. H. Green, Chem. Mater., 14, 1009 (2002).   DOI
8 L. Ji, H. Li, F. Zhao, W. Quan, J. Chen, and H. Zhou, Appl. Surf. Sci., 255, 4180 (2009).   DOI
9 H.Y. Chen, L. Chen, Y. Lu, Q. Hong, H.C. Chua, S.B. Tang, and J. Lin, Catal. Today, 96, 161 (2004).   DOI
10 K. Karlsruhe, J. Low. Temp. Phys., 69, 257 (1987).   DOI
11 C. Corbella, M. Vives, A. Pinyol, E. Bertran, C. Canal, M. C. Polo, and J. L. Andujar, Surf. Coat. Tech., 177, 409 (2004).   DOI
12 K. Baba and R. Hatada, Surf. Coat. Tech., 196, 207 (2005).   DOI
13 G. D. Temmerman, M. Ley, J. Boudaden, and P. Oelhafen, J. Nucl. Mater., 337, 956 (2005).   DOI
14 L. Ji, H. Li, F. Zhao, J. Chen, and H. Zhou, Diam. Relat. Mater., 17, 1949 (2008).   DOI
15 D. C. Harris, Quantitative Chemical Analysis, 8th ed., W. H. Freeman and Company: New York, 2010.
16 C. Anandan, L. Mohan, and P. D. Babu, Appl. Surf. Sci, 296, 86 (2014).   DOI
17 C. A. Wolden, A. Pickerell, T. Gawai, S. Parks, J. Hensley, and J. D. Way, ACS appl. Mater. Intefaces, 3, 517 (2011).   DOI
18 C. Blomfield, B. Tielsch, And L.Y.C. Tan, J. Appl. Phys., 86, 4871 (1999).   DOI
19 C. C. Tripathi, M. Kumar, and D. Kumar, Appl. Surf. Sci, 255, 3518 (2009).   DOI
20 E. Lucazeau, A. Deneuville, J. Fontenile, F. Brunet, and E. Gheeraert, Diam. Relat. Mater, 5, 779 (1996).   DOI
21 E. L. Hasse, J. Low. Temp. Phys., 69, 245, (1987).   DOI
22 N. S. Alhajri, D. H. Anjum, and K. Takanabe, J. Mater. Chem., A, 2, 10548 (2014).   DOI
23 C. Corbella, G. Oncins, M.A. Gomez, M.C. Polo, E. Pascual, J. Garcia-Cespeds, J.L. Andujar, and E. Bertran, Diam. Relat. Mater, 14, 1103 (2005).   DOI