1 |
H. Pottmann, "The geometry of Tchebycheffian spines", Comput. Aided Geom. D., Vol. 10, pp. 181-210, 1993.
DOI
ScienceOn
|
2 |
J. Zhang, "C-curves: An extension of cubic curves", Comput. Aided Geom. D., Vol. 13, pp. 199-217, 1996.
DOI
ScienceOn
|
3 |
J. Zhang, "Two different forms of C-B-splines", Comput. Aided Geom. D., Vol. 14, pp. 31-41, 1997,
DOI
ScienceOn
|
4 |
J. W. Zhang, "C-Bezier curves and surfaces", Graph. Models Image Process, Vol. 61, pp. 2-15, 1999.
DOI
ScienceOn
|
5 |
E. Mainar, J. Pena, and J. Sanchez-Reyes, "Shape preseving alternatives to the raional Bezier model", Comput. Aided Geom. D., Vol. 18, pp. 37-60, 2001.
|
6 |
Q. Chen and G. Wang, "A class of Bezier-like curves", Comput. Aided Geom. D., Vol. 20, pp. 29-39, 2003.
DOI
ScienceOn
|
7 |
Y. Lu, G. Wang, and X. Yang, "Uniform hyperbolic polynomial B-spline curves", Comput. Aided Geom. D., Vol. 19, pp. 379-393, 2002.
DOI
ScienceOn
|
8 |
J. W. Zhang and F.-L. Krause, "Extend cubic uniform B-splines by unified trigonometric and hyberolic basis", Graph. Models, Vol. 67, pp. 100-119, 2005.
DOI
ScienceOn
|
9 |
J. Zhang, F.-L. Krause, and H. Zhang, "Unifying C-curves and H-curves by extending the calculation to complex numbers", Comput. Aided Geom. D., Vol. 22, pp. 865-883, 2005.
DOI
ScienceOn
|
10 |
G. Farin, "Curves and surfaces for Computer Aided Geometric Design: A particle code", fifth ed. Academic Press, London, 2001.
|
11 |
M. Floater, "An Hermite approximation for conic sections", Comput. Aided Geom. D., Vol. 14, pp. 135-151, 1997.
DOI
ScienceOn
|
12 |
H. Y. Park, "Properties of isoparametric curve of quadratic F-Bezier curve", M.S. thesis, Chosun University, 2012.
|