Browse > Article
http://dx.doi.org/10.13160/ricns.2011.4.2.113

Loss of Function in GIGANTEA Gene is Involved in Brassinosteroid Signaling  

Hwang, Indeok (Department of Biotechnology, Chosun University)
Park, Jaeyoung (Department of Biotechnology, Chosun University)
Lee, Beomgi (Department of Biotechnology, Chosun University)
Cheong, Hyeonsook (Department of Biotechnology, Chosun University)
Publication Information
Journal of Integrative Natural Science / v.4, no.2, 2011 , pp. 113-120 More about this Journal
Abstract
Brassinosteroids (BRs) are plant steroid hormones that play essential roles in growth and development. Mutations in BR-signaling pathways cause defective in growth and development like dwarfism, male sterility, abnormal vascular development and photomorphogenesis. Transition from vegetative to reproductive growth is a critical phase change in the development of a flowering plant. In a screen of activation-tagged Arabidopsis, we identified a mutant named abz126 that displayed longer hypocotyls when grown in the dark on MS media containing brassinazole (Brz), an inhibitor of BRs biosynthesis. We have cloned the mutant locus using adapter ligation PCR walking and identified that a single T-DNA had been integrated into the ninth exon of the GIGANTEA (GI) gene, involved in controling flowering time. This insertion resulted in loss-of-function of the GI gene and caused the following phenotypes: long petioles, tall plant height, many rosette leaves and late flowering. RT-PCR assays on abz126 mutant showed that the T-DNA insertion in GIGANTEA led to the loss of mRNA expression of the GI gene. In the hormone dose response assay, abz126 mutant showed: 1) an insensitivity to paclobutrazole (PAC), 2) an altered response with 6-benzylaminopurine (BAP) and 3) insensitive to Brassinolide (BL). Based on these results, we propose that the late flowering and tall phenotypes displayed by the abz126 mutant are caused by a loss-of-function of the GI gene associated with brassinosteroid hormone signaling.
Keywords
GIGANTEA Gene; Brassinosteroids; Loss od function; Det2; brassinazole;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Altmann, "Molecular physiology of brassinosteroids revealed by the analysis of mutants", Planta., Vol. 208, No. 1, p. 1, 1999.   DOI   ScienceOn
2 R. N. Arteca and J. M. Arteca, "Characterization of gravitropic inflorescence bending in brassinosteroid biosynthesis and signaling Arabidopsis mutants", J. Plant. Physiol, in print, 2011.
3 T. Asami, M. Mizutani, S. Fujioka, H. Goda, Y. K. Min, Y. Shimada, T. Nakano, S. Takatsuto, T. Matsuyama, N. Nagata, K. Sakata, and S. Yoshida, "Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta", J. Biol. Chem., Vol. 276, No. 28, p. 25687, 2001.   DOI   ScienceOn
4 G. J. Bishop and C. Koncz, "Brassinosteroids and plant steroid hormone signaling", Plant. Cell., 2002.
5 S. Cao, M. Ye, and S. Jiang, "Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis", Plant. Cel.l Rep., Vol. 24, No. 11, p. 683, 2005.   DOI   ScienceOn
6 S. D. Clouse, M. Langford, and T. C. McMorris, "A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development", Plant. Physiol., Vol. 111, No. 3, p. 671, 1996.   DOI   ScienceOn
7 N. Dalchau, S. J. Baek, H. M. Briggs, F. C. Robertson, A. N. Dodd, M. J. Gardner, M. A. Stancombe, M. J. Haydon, G. B. Stan, J. M. Goncalves, and A. A. Webb, "The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose", Proc. Natl. Acad. Sci., Vol. 108, No. 12, p. 5104, 2011.   DOI   ScienceOn
8 B. De Rybel, D. Audenaert, G. Vert, W. Rozhon, J. Mayerhofer, F. Peelman, S. Coutuer, T. Denayer, L. Jansen, L. Nguyen, I. Vanhoutte, G. T. Beemster, K. Vleminckx, C. Jonak, J. Chory, D. Inze, E. Russinova, and T. Beeckman, "Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling", Chem. Biol., Vol. 16, No. 6, p. 594, 2009.   DOI   ScienceOn
9 S. Fowler, K. Lee, H. Onouchi, A. Samach, K. Richardson, B. Morris, G. Coupland, and J. Putterill, "GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains", J. EMBO., Vol. 18, No. 17, p. 4679, 1999.   DOI   ScienceOn
10 S. Fowler and M. F. Thomashow, "Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway", Plant. Cell., Vol. 14, No. 3, p. 1675, 2002.   DOI
11 D. M. Friedrichsen, C. A. Joazeiro, J. Li, T. Hunter, J. Chory, "Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase", Plant. Physiol., Vol. 123, No 4, p.1247, 2000.   DOI
12 Z. He, Z. Y. Wang, J. Li, Q. Zhu, C. Lamb, P. Ronald, and J. Chory, "Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1", Science, Vol. 288, No. 5475, p. 2360, 2000.   DOI
13 E. Huq, J. M. Tepperman, and P. H. Quail, "GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis", Proc. Natl. Acad. Sci., Vol. 97, No. 17, p. 9789, 2000.   DOI   ScienceOn
14 R. Karlova and S. C. de Vries, "Advances in understanding brassinosteroid signaling", STKE. Sci., Vol. 2006, No. 354, p. 36, 2006.
15 T. W. Kim and Z. Y. Wang, "Brassinosteroid signal transduction from receptor kinases to transcription factors", Annu. Rev. Plant. Biol., Vol. 61, p. 681, 2010.   DOI   ScienceOn
16 J. Kurepa, J. Smalle, M. Van Montagu, and D. Inze, "Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat", J. Plant, Vol. 14, No. 6, p. 759, 1998.   DOI   ScienceOn
17 J. Li and J. Chory, "A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction", Cell., Vol. 90, No. 5, 1997.
18 J. Li and K. H. Nam, "Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase", Science, Vol. 295, No. 5558, p. 1299, 2002.
19 M. H. Oh, S. D. Clouse, and S. C. Huber, "Tyrosine phosphorylation in brassinosteroid signaling", Plant. Signal. Behav., Vol. 4, No. 12, p. 1182, 2009.   DOI   ScienceOn
20 S. Mora-Garcia, G. Vert, Y. Yin, A. Cano-Delgado, H. Cheong, and J. Chory, "Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis", Genes. Dev., Vol. 18, No. 4, p. 448, 2004.   DOI   ScienceOn
21 K. A. Oliverio, M. Crepy, E. L. Martin-Tryon, R. Milich, S. L. Harmer, J. Putterill, M. J. Yanovsky, J. J. Casal, "GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock", Plant. Physiol., Vol. 144, No. 1, p. 495, 2007.   DOI   ScienceOn
22 D. H. Park, D. E. Somers, Y. S. Kim, Y. H. Choy, H. K. Lim, M. S. Soh, H. J. Kim, S. A. Kay, and H. G. Nam, "Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene", Science, Vol. 285, No. 5433, p. 1579, 1999.   DOI   ScienceOn
23 H. Ryu, H. Cho, K. Kim, and I. Hwang, "Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling", Mol. Cells., Vol. 29, No. 3, p. 283, 2010.   DOI   ScienceOn
24 K. Schumacher and J. Chory, "Brassinosteroid signal transduction: still casting the actors", Curr. Opin. Plant. Biol., Vol. 3, No. 1, p. 79, 2000.   DOI   ScienceOn
25 K. Sekimata, T. Ohnishi, M. Mizutani, Y. Todoroki, S. Y. Han, J. Uzawa, S. Fujioka, K. Yoneyama, Y. Takeuchi, S. Takatsuto, K. Sakata, S. Yoshida, and T. Asami, "Brz220 interacts with DWF4, a cytochrome P450 monooxygenase in brassinosteroid biosynthesis, and exerts biological activity", Biosci. Biotechnol. Biochem., Vol. 72, No. 1, p. 7, 2008.   DOI   ScienceOn
26 N. Takahashi, M. Nakazawa, K. Shibata, T. Yokota, A. Ishikawa, K. Suzuki, M. Kawashima, T. Ichikawa, H. Shimada, and M. Matsui, "shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels", J. Plant, Vol. 42, No. 1, p. 13, 2005.   DOI   ScienceOn
27 X. Wang, X. Li, J. Meisenhelder, T. Hunter, S. Yoshida, T. Asami, and J. Chory, "Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1", Dev. Cell., Vol. 8, No. 6, p. 855, 2005.   DOI   ScienceOn
28 D. Weigel, J. H. Ahn, M. A. Blazquez, J. O. Borevitz, S. K. Christensen, C. Fankhauser, C. Ferrandiz, I. Kardailsky, E. J. Malancharuvil, M. M. Neff, J. T. Nguyen, S. Sato, Z. Y. Wang, Y. Xia, R. A. Dixon, M. J. Harrison, C. J. Lamb, M. F. Yanofsky, and J. Chory, "Activation tagging in Arabidopsis", Plant. Physiol., Vol. 122, No. 4, p. 1003, 2000.   DOI   ScienceOn
29 Z. Y. Wang, T. Nakano, J. Gendron, J. He, M. Chen, D. Vafeados, Y. Yang, S. Fujioka, S. Yoshida, T. Asami, J. Chory, "Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis", Dev. Cell., Vol. 2, No. 4, p. 505, 2002.   DOI   ScienceOn
30 Z. Y. Wang, H. Seto, S. Fujioka, S. Yoshida, and J. Chory, "BRI1 is a critical component of a plasmamembrane receptor for plant steroids", Nature, Vol. 410, No. 6826, p. 380, 2001.   DOI   ScienceOn
31 Y. Yin, Z. Y. Wang, S. Mora-Garcia, J. Li, S. Yoshida, T. Asami, and J. Chory, "BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation", Cell., Vol. 109, No. 2, p. 181, 2002.   DOI   ScienceOn