Browse > Article
http://dx.doi.org/10.7586/jkbns.2020.22.4.279

The Alleviating Effects of Sweet Drinks on Restraint Stress-Induced Anxiety and Depressive Behavior in Adolescent Rats  

Kim, Yoonju (College of Nursing Science, Kyung Hee University)
Song, Min Kyung (College of Medicine, Rutgers University)
Park, Jong-Min (College of Nursing, Pusan National University)
Kim, Youn-Jung (College of Nursing Science, Kyung Hee University)
Publication Information
Journal of Korean Biological Nursing Science / v.22, no.4, 2020 , pp. 279-287 More about this Journal
Abstract
Purpose: Some of the adolescent drinks more sugar-sweetened beverages. However, there is little evidence on the effect of eating behavior on emotional state and neurochemical changes under stress, especially on the levels of typical inhibitory neurotransmitters and gamma-aminobutyric acid. This article demonstrates that sucrose or saccharin drink reduces stress-related behavior responses and GABAergic deficits in adolescent rats. Methods: We randomly assigned 7-weeks-old Sprague-Dawley male rats to three groups: control group (Control), restraint stress only group (Stress), and restraint stress with unrestricted access to saccharin solution (Saccharin) and sucrose solution (Sucrose) as a positive control. We evaluated both anxious and depressive moods using an open field test and forced swim test, respectively. Using western blot analyses, the expression of a GABA-synthesizing enzyme, glutamate decarboxylase-67 (GAD67) and GABAergic markers, including calbindin and parvalbumin was assessed in the prefrontal cortex and the amygdala. Results: We found that both the drinks alleviated anxiety and depressive moods, induced significant attenuation in GAD67 level, and reduced calbindin level under stress in the prefrontal cortex and the amygdala. Conclusion: The results provide an understanding of the effect of sucrose or saccharin drink on stress-related responses. We propose the consumption of sweet drinks as a plausible strategy to alleviate stress-related alterations in adolescents.
Keywords
Sugar-sweetened beverages; Artificially sweetened beverage; Gamma-aminobutyric acid; Adolescent; Emotions;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments. 2015;(96):e52434. http://doi.org/10.3791/52434   DOI
2 Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. Journal of Visualized Experiments. 2015;(97):52587. http://doi.org/10.3791/52587   DOI
3 Ali EF, MacKay JC, Graitson S, James JS, Cayer C, Audet MC, et al. Palatable food dampens the long-term behavioral and endocrine effects of juvenile stressor exposure but may also provoke metabolic syndrome in rats. Frontiers in Behavioral Neuroscience. 2018;12:216. http://doi.org/10.3389/fnbeh.2018.00216   DOI
4 Manzanares PAR, Isoardi NA, Carrer HF, Molina VA. Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. Journal of Neuroscience. 2005;25(38):8725-8734. http://doi.org/10.1523/JNEUROSCI.2260-05.2005   DOI
5 Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nature Communications. 2020;11(1):2221. http://doi.org/10.1038/s41467-020-15920-7   DOI
6 Wei J, Zhong P, Qin L, Tan T, Yan Z. Chemicogenetic restoration of the prefrontal cortex to amygdala pathway ameliorates stress-induced deficits. Cerebral cortex. 2018;28(6):1980-1990. http://doi.org/10.1093/cercor/bhx104   DOI
7 Sharp BM. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Translational psychiatry. 2017;7(8):e1194. http://doi.org/10.1038/tp.2017.161   DOI
8 Jie F, Yin G, Yang W, Yang M, Gao S, Lv J, et al. Stress in regulation of GABA amygdala system and relevance to neuropsychiatric diseases. Frontiers in Neuroscience. 2018;12:1-9. http://doi.org/10.3389/fnins.2018.00562   DOI
9 Prager EM, Bergstrom HC, Wynn GH, Braga MFM. The basolateral amygdala γ-aminobutyric acidergic system in health and disease. Journal of Neuroscience Research. 2016;94(6):548-567. http://doi.org/10.1002/jnr.23690   DOI
10 Capogna M. GABAergic cell type diversity in the basolateral amygdala. Current Opinion in Neurobiology. 2014;26:110-116. http://doi.org/10.1016/j.conb.2014.01.006   DOI
11 Loh DA, Moy FM, Zaharan NL, Jalaludin MY, Mohamed Z. Sugar-sweetened beverage intake and its associations with cardiometabolic risks among adolescents. Pediatric Obesity. 2017;12(1):e1-e5. http://doi.org/10.1111/ijpo.12108   DOI
12 Chan TF, Lin WT, Huang HL, Lee CY, Wu PW, Chiu YW, et al. Consumption of Sugar-sweetened beverages is associated with components of the metabolic syndrome in adolescents. Nutrients. 2014;6(5):2088-2103. http://doi.org/10.3390/nu6052088   DOI
13 Shin S, Kim SA, Ha J, Lim K. Sugar-sweetened beverage consumption in relation to obesity and metabolic syndrome among Korean adults: a cross-sectional study from the 2012-2016 Korean national health and nutrition examination survey (KNHANES). Nutrients. 2018;10(10):1467. http://doi.org/10.3390/nu10101467   DOI
14 Jaaskelainen A, Nevanpera N, Remes J, Rahkonen F, Jarvelin M-R, Laitinen J. Stress-related eating, obesity and associated behavioural traits in adolescents: a prospective population-based cohort study. BMC Public Health. 2014;14(1):321. http://doi.org/10.1186/1471-2458-14-321   DOI
15 Errisuriz VL, Pasch KE, Perry CL. Perceived stress and dietary choices: the moderating role of stress management. Eating Behaviors. 2016;22:211-216. http://doi.org/10.1016/j.eatbeh.2016.06.008   DOI
16 Rosinger A, Herrick K, Gahche J, Park S. Sugar-sweetened beverage consumption among U.S. youth, 2011-2014. NCHS data brief. 2017;271:1-8.
17 Kim J, Yun S, Oh K. Beverage consumption among korean adolescents: data from 2016 korea youth uisk behavior Survey. Nutrition Research and Practice. 2019;13(1):70. http://doi.org/10.4162/nrp.2019.13.1.70   DOI
18 Kim A, Kim J, Kye S. Sugar-sweetened beverage consumption and influencing factors in korean adolescents: based on the 2017 korea youth risk behavior web-based survey. Journal of Nutrition and Health. 2018;51(5):465-479. https://doi.org/10.4163/jnh.2018.51.5.465   DOI
19 Sinha R. Role of addiction and stress neurobiology on food intake and obesity. Biological Psychology. 2018;131(2011):5-13. http://doi.org/10.1016/j.biopsycho.2017.05.001.   DOI
20 Jacques A, Chaaya N, Beecher K, Ali SA, Belmer A, Bartlett S. The impact of sugar consumption on stress driven, emotional and addictive behaviors. Neuroscience & Biobehavioral Reviews. 2019;103:178-199. http://doi.org/10.1016/j.neubiorev.2019.05.021   DOI
21 Pizzagalli DA. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annual Review of Clinical Psychology. 2014;10(1):393-423. http://doi.org/10.1146/annurev-clinpsy-050212-185606   DOI
22 Smeets PAM, Weijzen P, de Graaf C, Viergever MA. Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. NeuroImage. 2011;54(2):1367-1374. http://doi.org/10.1016/j.neuroimage.2010.08.054   DOI
23 Burke M V, Small DM. Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiology & Behavior. 2015;152:381-388. http://doi.org/10.1016/j.physbeh.2015.05.036   DOI
24 Sheth C, McGlade E, Yurgelun-Todd D. Chronic stress in adolescents and its neurobiological and psychopathological consequences: an RDoC perspective. Chronic Stress. 2017;1:247054701771564. http://doi.org/10.1177/2470547017715645   DOI
25 Tzanoulinou S, Garcia-Mompo C, Castillo-Gomez E, Veenit V, Nacher J, Sandi C. Long-term behavioral programming induced by peripuberty stress in rats is accompanied by GABAergic-related alterations in the amygdala. PLoS ONE. 2014;9(4):e94666. http://doi.org/10.1371/journal.pone.0094666   DOI
26 Zhang W, Rosenkranz JA. Effects of repeated stress on age-dependent gabaergic regulation of the lateral nucleus of the amygdala. Neuropsychopharmacology. 2016;41(9):2309-2323. http://doi.org/10.1038/npp.2016.33   DOI
27 Banasr M, Lepack A, Fee C, Duric V, Maldonado-Aviles J, DiLeone R, et al. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress. 2017;1:247054701772045. http://doi.org/10.1177/2470547017720459   DOI
28 Martijena ID, Rodriguez Manzanares PA, Lacerra C, Molina VA. Gabaergic modulation of the stress response in frontal cortex and amygdala. Synapse. 2002;45(2):86-94. http://doi.org/10.1002/syn.10085.   DOI
29 Ma K, Xu A, Cui S, Sun MR, Xue YC, Wang JH. Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress. Translational Psychiatry. 2016;6(10):e910. http://doi.org/10.1038/tp.2016.181   DOI
30 Liu ZP, Song C, Wang M, He Y, Xu X Bin, Pan HQ, et al. Chronic stress impairs GABAergic control of amygdala through suppressing the tonic GABAA receptor currents. Molecular Brain. 2014;7(32):1-14. http://doi.org/10.1186/1756-6606-7-32   DOI
31 Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience. 2004;5(10):793-807. http://doi.org/10.1038/nrn1519   DOI
32 Rajkowska G, O'Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ. GAB-Aergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology. 2007;32(2):471-482. http://doi.org/10.1038/sj.npp.1301234   DOI
33 Tottenham N, Galvan A. Stress and the adolescent brain: amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neuroscience and Biobehavioral Reviews. 2016;70:217-227. http://doi.org/10.1016/j.neubiorev.2016.07.030   DOI
34 Ulrich-Lai YM, Christiansen AM, Ostrander MM, Jones AA, Jones KR, Choi DC, et al. Pleasurable behaviors reduce stress via brain reward pathways. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(47):20529-20534. http://doi.org/10.1073/pnas.1007740107   DOI
35 Romeo RD. The impact of stress on the structure of the adolescent brain: implications for adolescent mental health. Brain Research. 2017;1654:185-191. http://doi.org/10.1016/j.brainres.2016.03.021   DOI
36 Yang Q. Gain weight by "going diet?" artificial sweeteners and the neurobiology of sugar cravings: neuroscience 2010. The Yale journal of biology and medicine. 2010;83(2):101-108.
37 Ulrich-Lai YM, Ostrander MM, Herman JP. HPA axis dampening by limited sucrose intake: reward frequency vs. caloric consumption. Physiology and Behavior. 2011;103(1):104-110. http://doi.org/10.1016/j.physbeh.2010.12.011   DOI
38 Park JM, Song MK, Kim YJ, Kim YJ. Effect of saccharin intake in restraint-induced stress response reduction in rats. Journal of Korean Biological Nursing Science. 2016;18(1):36-42. http://doi.org/10.7586/jkbns.2016.18.1.36   DOI
39 Salzman CD, Fusi S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annual Review of Neuroscience. 2010;33:173-202. http://doi.org/10.1146/annurev.neuro.051508.135256   DOI
40 Gilbert RM, Sherman IP. Palatability-induced polydipsia: saccharin, sucrose, and water intake in rats, with and without food deprivation. Psychological reports. 1970;27(2):319-325. http://doi.org/10.2466/pr0.1970.27.2.319   DOI
41 Dess NK. Divergent responses to saccharin vs. sucrose availability after stress in rats. Physiology and Behavior. 1992;52(1):115-125. http://doi.org/10.1016/0031-9384(92)90440-d   DOI