The Alleviating Effects of Sweet Drinks on Restraint Stress-Induced Anxiety and Depressive Behavior in Adolescent Rats |
Kim, Yoonju
(College of Nursing Science, Kyung Hee University)
Song, Min Kyung (College of Medicine, Rutgers University) Park, Jong-Min (College of Nursing, Pusan National University) Kim, Youn-Jung (College of Nursing Science, Kyung Hee University) |
1 | Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments. 2015;(96):e52434. http://doi.org/10.3791/52434 DOI |
2 | Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. Journal of Visualized Experiments. 2015;(97):52587. http://doi.org/10.3791/52587 DOI |
3 | Ali EF, MacKay JC, Graitson S, James JS, Cayer C, Audet MC, et al. Palatable food dampens the long-term behavioral and endocrine effects of juvenile stressor exposure but may also provoke metabolic syndrome in rats. Frontiers in Behavioral Neuroscience. 2018;12:216. http://doi.org/10.3389/fnbeh.2018.00216 DOI |
4 | Manzanares PAR, Isoardi NA, Carrer HF, Molina VA. Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. Journal of Neuroscience. 2005;25(38):8725-8734. http://doi.org/10.1523/JNEUROSCI.2260-05.2005 DOI |
5 | Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nature Communications. 2020;11(1):2221. http://doi.org/10.1038/s41467-020-15920-7 DOI |
6 | Wei J, Zhong P, Qin L, Tan T, Yan Z. Chemicogenetic restoration of the prefrontal cortex to amygdala pathway ameliorates stress-induced deficits. Cerebral cortex. 2018;28(6):1980-1990. http://doi.org/10.1093/cercor/bhx104 DOI |
7 | Sharp BM. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Translational psychiatry. 2017;7(8):e1194. http://doi.org/10.1038/tp.2017.161 DOI |
8 | Jie F, Yin G, Yang W, Yang M, Gao S, Lv J, et al. Stress in regulation of GABA amygdala system and relevance to neuropsychiatric diseases. Frontiers in Neuroscience. 2018;12:1-9. http://doi.org/10.3389/fnins.2018.00562 DOI |
9 | Prager EM, Bergstrom HC, Wynn GH, Braga MFM. The basolateral amygdala γ-aminobutyric acidergic system in health and disease. Journal of Neuroscience Research. 2016;94(6):548-567. http://doi.org/10.1002/jnr.23690 DOI |
10 | Capogna M. GABAergic cell type diversity in the basolateral amygdala. Current Opinion in Neurobiology. 2014;26:110-116. http://doi.org/10.1016/j.conb.2014.01.006 DOI |
11 | Loh DA, Moy FM, Zaharan NL, Jalaludin MY, Mohamed Z. Sugar-sweetened beverage intake and its associations with cardiometabolic risks among adolescents. Pediatric Obesity. 2017;12(1):e1-e5. http://doi.org/10.1111/ijpo.12108 DOI |
12 | Chan TF, Lin WT, Huang HL, Lee CY, Wu PW, Chiu YW, et al. Consumption of Sugar-sweetened beverages is associated with components of the metabolic syndrome in adolescents. Nutrients. 2014;6(5):2088-2103. http://doi.org/10.3390/nu6052088 DOI |
13 | Shin S, Kim SA, Ha J, Lim K. Sugar-sweetened beverage consumption in relation to obesity and metabolic syndrome among Korean adults: a cross-sectional study from the 2012-2016 Korean national health and nutrition examination survey (KNHANES). Nutrients. 2018;10(10):1467. http://doi.org/10.3390/nu10101467 DOI |
14 | Jaaskelainen A, Nevanpera N, Remes J, Rahkonen F, Jarvelin M-R, Laitinen J. Stress-related eating, obesity and associated behavioural traits in adolescents: a prospective population-based cohort study. BMC Public Health. 2014;14(1):321. http://doi.org/10.1186/1471-2458-14-321 DOI |
15 | Rosinger A, Herrick K, Gahche J, Park S. Sugar-sweetened beverage consumption among U.S. youth, 2011-2014. NCHS data brief. 2017;271:1-8. |
16 | Kim J, Yun S, Oh K. Beverage consumption among korean adolescents: data from 2016 korea youth uisk behavior Survey. Nutrition Research and Practice. 2019;13(1):70. http://doi.org/10.4162/nrp.2019.13.1.70 DOI |
17 | Kim A, Kim J, Kye S. Sugar-sweetened beverage consumption and influencing factors in korean adolescents: based on the 2017 korea youth risk behavior web-based survey. Journal of Nutrition and Health. 2018;51(5):465-479. https://doi.org/10.4163/jnh.2018.51.5.465 DOI |
18 | Errisuriz VL, Pasch KE, Perry CL. Perceived stress and dietary choices: the moderating role of stress management. Eating Behaviors. 2016;22:211-216. http://doi.org/10.1016/j.eatbeh.2016.06.008 DOI |
19 | Sinha R. Role of addiction and stress neurobiology on food intake and obesity. Biological Psychology. 2018;131(2011):5-13. http://doi.org/10.1016/j.biopsycho.2017.05.001. DOI |
20 | Jacques A, Chaaya N, Beecher K, Ali SA, Belmer A, Bartlett S. The impact of sugar consumption on stress driven, emotional and addictive behaviors. Neuroscience & Biobehavioral Reviews. 2019;103:178-199. http://doi.org/10.1016/j.neubiorev.2019.05.021 DOI |
21 | Pizzagalli DA. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annual Review of Clinical Psychology. 2014;10(1):393-423. http://doi.org/10.1146/annurev-clinpsy-050212-185606 DOI |
22 | Smeets PAM, Weijzen P, de Graaf C, Viergever MA. Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. NeuroImage. 2011;54(2):1367-1374. http://doi.org/10.1016/j.neuroimage.2010.08.054 DOI |
23 | Burke M V, Small DM. Physiological mechanisms by which non-nutritive sweeteners may impact body weight and metabolism. Physiology & Behavior. 2015;152:381-388. http://doi.org/10.1016/j.physbeh.2015.05.036 DOI |
24 | Sheth C, McGlade E, Yurgelun-Todd D. Chronic stress in adolescents and its neurobiological and psychopathological consequences: an RDoC perspective. Chronic Stress. 2017;1:247054701771564. http://doi.org/10.1177/2470547017715645 DOI |
25 | Tzanoulinou S, Garcia-Mompo C, Castillo-Gomez E, Veenit V, Nacher J, Sandi C. Long-term behavioral programming induced by peripuberty stress in rats is accompanied by GABAergic-related alterations in the amygdala. PLoS ONE. 2014;9(4):e94666. http://doi.org/10.1371/journal.pone.0094666 DOI |
26 | Zhang W, Rosenkranz JA. Effects of repeated stress on age-dependent gabaergic regulation of the lateral nucleus of the amygdala. Neuropsychopharmacology. 2016;41(9):2309-2323. http://doi.org/10.1038/npp.2016.33 DOI |
27 | Banasr M, Lepack A, Fee C, Duric V, Maldonado-Aviles J, DiLeone R, et al. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress. 2017;1:247054701772045. http://doi.org/10.1177/2470547017720459 DOI |
28 | Martijena ID, Rodriguez Manzanares PA, Lacerra C, Molina VA. Gabaergic modulation of the stress response in frontal cortex and amygdala. Synapse. 2002;45(2):86-94. http://doi.org/10.1002/syn.10085. DOI |
29 | Ma K, Xu A, Cui S, Sun MR, Xue YC, Wang JH. Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress. Translational Psychiatry. 2016;6(10):e910. http://doi.org/10.1038/tp.2016.181 DOI |
30 | Liu ZP, Song C, Wang M, He Y, Xu X Bin, Pan HQ, et al. Chronic stress impairs GABAergic control of amygdala through suppressing the tonic GABAA receptor currents. Molecular Brain. 2014;7(32):1-14. http://doi.org/10.1186/1756-6606-7-32 DOI |
31 | Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience. 2004;5(10):793-807. http://doi.org/10.1038/nrn1519 DOI |
32 | Rajkowska G, O'Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ. GAB-Aergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology. 2007;32(2):471-482. http://doi.org/10.1038/sj.npp.1301234 DOI |
33 | Tottenham N, Galvan A. Stress and the adolescent brain: amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neuroscience and Biobehavioral Reviews. 2016;70:217-227. http://doi.org/10.1016/j.neubiorev.2016.07.030 DOI |
34 | Romeo RD. The impact of stress on the structure of the adolescent brain: implications for adolescent mental health. Brain Research. 2017;1654:185-191. http://doi.org/10.1016/j.brainres.2016.03.021 DOI |
35 | Yang Q. Gain weight by "going diet?" artificial sweeteners and the neurobiology of sugar cravings: neuroscience 2010. The Yale journal of biology and medicine. 2010;83(2):101-108. |
36 | Ulrich-Lai YM, Ostrander MM, Herman JP. HPA axis dampening by limited sucrose intake: reward frequency vs. caloric consumption. Physiology and Behavior. 2011;103(1):104-110. http://doi.org/10.1016/j.physbeh.2010.12.011 DOI |
37 | Park JM, Song MK, Kim YJ, Kim YJ. Effect of saccharin intake in restraint-induced stress response reduction in rats. Journal of Korean Biological Nursing Science. 2016;18(1):36-42. http://doi.org/10.7586/jkbns.2016.18.1.36 DOI |
38 | Salzman CD, Fusi S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annual Review of Neuroscience. 2010;33:173-202. http://doi.org/10.1146/annurev.neuro.051508.135256 DOI |
39 | Ulrich-Lai YM, Christiansen AM, Ostrander MM, Jones AA, Jones KR, Choi DC, et al. Pleasurable behaviors reduce stress via brain reward pathways. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(47):20529-20534. http://doi.org/10.1073/pnas.1007740107 DOI |
40 | Gilbert RM, Sherman IP. Palatability-induced polydipsia: saccharin, sucrose, and water intake in rats, with and without food deprivation. Psychological reports. 1970;27(2):319-325. http://doi.org/10.2466/pr0.1970.27.2.319 DOI |
41 | Dess NK. Divergent responses to saccharin vs. sucrose availability after stress in rats. Physiology and Behavior. 1992;52(1):115-125. http://doi.org/10.1016/0031-9384(92)90440-d DOI |