Browse > Article
http://dx.doi.org/10.5333/KGFS.2022.42.4.222

Effects of Waterlogging Stress on Physiological Response and Growth of Italian Ryegrass (Lolium multiflorum L.)  

Min-Jun Kim (Division of Applied Life Science (BK21), IALS, Gyeongsang National University)
Chang-Woo Min (Division of Applied Life Science (BK21), IALS, Gyeongsang National University)
Il-Kyu Yoon (Division of Applied Life Science (BK21), IALS, Gyeongsang National University)
Jeong Sung Jung (Grassland and Forage Division, National Institute of Animal Science, RDA)
Byung-Hyun Lee (Division of Applied Life Science (BK21), IALS, Gyeongsang National University)
Publication Information
Journal of The Korean Society of Grassland and Forage Science / v.42, no.4, 2022 , pp. 222-228 More about this Journal
Abstract
This study was conducted to investigate the effect of waterlogging stress on the physiological response and growth characteristics of the five Italian ryegrass varieties. For all varieties, the germination rate of seed decreased by 10-15% as the waterlogging period increased, but the waterlogging stress treatment after the early seedling stage increased the growth of shoot and root length. Photosynthetic activity (Fv/Fm) according to waterlogging stress treatment decreased in all vareity, and Florida 80 showed the least decrease with 1.5%. Waterlogging stress treatment was found to reduce the accumulation of reactive oxygen species (malondialdehyde, MDA) and the activities of antioxidant enzymes. These results suggest that other mechanisms may be involved in the defense mechanism of Italian ryegrass against waterlogging stress, such as promoting root growth to escape from waterlogging stress, in addition to the antioxidant enzyme system.
Keywords
Antioxidant Enzyme; Italian ryegrass; Seed germination; Waterlogging;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Arduini, I., Orlandi, C., Ercoli, L. and Masoni, A. 2016. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage. Italian Journal of Agronomy. 11(2):100-106.   DOI
2 Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry. 44(1):276-287.
3 Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1-2):248-254.   DOI
4 Dennis, E.S., Dolferus, R., Ellis, M., Rahman, M., Wu, Y., Hoeren, F.U., Grover, A., Ismond, K.P., Good, A.G. and Peacock, W.J. 2000. Molecular strategies for improving waterlogging tolerance in plants. Journal of Experimental Botany. 51(342):89-97.   DOI
5 Drew, M.C. and Lynch, J.M. 1980. Soil anerobiosis, microorganisms, and root function. Annual Review of Phytopathology. 18:37-66.   DOI
6 Dunbabin, J.S., Hume, I.H. and Ireson, M.E. 1997. Effects of irrigation frequency and transient waterlogging on the production of a perennial ryegrass-white clover pasture. Australian Journal of Experimental Agriculture. 37:165-171.   DOI
7 Huang, B.R., Johnson, J.W., Nesmith, D.S. and Bridges, D.C. 1994. Root and shoot growth of wheat genotypes in response to hypoxia and subsequent resumption of aeration. Crop Science. 34:1538-1544.   DOI
8 Kato, N., Hattori, I., Kiyomura, Y., Katsura, M. and Kobayashi, R. 2014. Waterlogging tolerance in different growth stages among barley, Italian ryegrass, and oat. Nihon Danchi Chikusan Gakkaihou. 57(2):97-104.
9 Kim, M.J., Choi, G.J., Yook, W.B., Lim, Y.C., Yoon, S.H., Kim, J.G., Park H.S. and Seo, S. 2007. Effects of seeding method on the winter survival, dry matter yield and nutrient value of Italian ryegrass in paddy field. Journal of the Korean Society of Grassland and Forage Science. 27(4):269-274.   DOI
10 Kim, Y.J., Choi, K.C., Lee, S.H., Jung, J.S., Park, H.S., Kim, K.Y., Ji, H.C., Lee, S.H., Choi, G.J. and Kim, W.H. 2016. Growth inhibitory factors of Italian ryegrass (Lolium multiflorum Lam.) after broadcasting under growing rice from 2014 to 2015. Journal of the Korean Society of Grassland and Forage Science. 36(1):1-6.   DOI
11 Kim, Y.J., Kim, W.H., Lee, S.H., Park, H.S., Kim, K.Y., Ji, H.C., Choi, K.C., Lee, S.H. and Jung, J.S. 2015. Crop analysis through growth survey after wintering of winter annual forages grown from 2014 to 2015. Journal of the Korean Society of Grassland and Forage Science. 35(4):309-315.   DOI
12 Kwon, C.H., Kim, S.C., Kim, J.K., Kim, J.D., Lee, B.H., Lee, S.S. and Han, O.K. 2022. Statistical observation survey of forage production in 2021. The Korean Society of Grassland and Forage Science. MAFRA, Korea.
13 Lee, S.H., Choi, G.J., Lee, D.G., Mun, J.Y., Kim, K.Y., Ji, H.J., Park, H.S. and Lee, K.W. 2014. Effects of sodium chloride treatment on seed germination and seedling growth of Italian ryegrass cultivars. Journal of The Korean Society of Grassland and Forage Science. 34(2):108-113.   DOI
14 Liu, M. and Jiang, Y. 2015. Genotypic variation in growth and metabolic responses of perennial ryegrass exposed to short-term waterlogging and submergence stress. Plant Physiology and Biochemistry. 95:57-64.   DOI
15 Liu, M., Hulting, A. and Mallory-Smith, C. 2017a. Waterlogging influence on roughstalk bluegrass (Poa trivialis) and tall fescue germination. Weed Science Society of America. 31:732-739.
16 Mui, N.T., Zhou, M., Parsons, D. and Smith, R.W. 2021. Aerenchyma formation in adventitious roots of tall fescue and cocksfoot under waterlogged conditions. Agronomy. 11(12):2487.
17 Liu, M., Hulting, A. and Mallory-Smith, C. 2017b. Comparison of growth and physiological characteristics between roughstalk bluegrass and tall fescue in response to simulated waterlogging. PLoS ONE. 12(7):e0182035.
18 Maehly, A.C. and Chance, B. 1955. The assay of catalases and peroxidases. Methods of Biochemical Analysis. 1:357-424.   DOI
19 Malik, A.I., Colmer, T.D., Lambers, H. and Schortemeyer, M. 2001. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Australian Journal of Plant Physiology. 28:1121-1131.
20 Olgun, M., Kumlay, M., Adiguzel, M.C. and Caglar, A. 2008. The effect of waterlogging in wheat (T. aestivum L.). Acta Agriculturae Scandinavica Section B; Soil and Plant Science. 58(3):193-198.
21 Park, S.G., Kang, D.K., Chung, S.W. and Choi, B.S. 1999. Field survey of moisture injury in Peucedanum japonicum Thunberct and Pehmannia glutinosa Liboschitz. The Korean Society of Medicinal Crop Science. 7(3):162-166.
22 Puyang, X., An, M., Xu, L., Han, L. and Zhang, X. 2015. Antioxidant responses to waterlogging stress and subsequent recovery in two Kentucky bluegrass (Poa pratensis L.) cultivars. Acta Physiologiae Plantarum. 37(10):197.
23 Thomson, C.J., Colmer, T.D., Watkin, E.L.J. and Greenway, H. 1992. Tolerance of wheat (Triticum aestivum cvs Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Phytologist. 120:335-344.   DOI
24 Zhou, W., Chen, F., Meng, Y., Chandrasekaran, U., Luo, X., Yang, W. and Shu, K. 2020. Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiology and Biochemistry. 148:228-236.   DOI
25 Yoo, S.J., Lee, S.A., Weon, H.Y., Song, J. and Sang, M.K. 2021. Assessment of rhizosphere microbial community structure in tomato plants after inoculation of bacillus species for inducing tolerance to salinity. Korean Journal of Environmental Agriculture. 40(1):45-49.
26 Zaman, M.S.U., Malik, A.I., Erskine, W. and Kaur, P. 2018. Changes in gene expression during germination reveal pea genotypes with either "quiescence" or "escape" mechanisms of waterlogging tolerance. Plant Cell & Environment. 42:245-258.