Browse > Article
http://dx.doi.org/10.5333/KGFS.2010.30.4.283

Efficient Callus Induction and Plant Regeneration of Guineagrass (Panicum maximum Jacq.)  

Seo, Mi-Suk (National Academy of Agricultural Science, RDA)
Takahara, Manabu (National Institute of Livestock and Grassland Science, NARO)
Takamizo, Tadashi (National Institute of Livestock and Grassland Science, NARO)
Publication Information
Journal of The Korean Society of Grassland and Forage Science / v.30, no.4, 2010 , pp. 283-290 More about this Journal
Abstract
Guineagrass (Panicum maximum Jacq.) is an important warm-season forage grass as well as biomass crop. It has both sexual and asexual mode of reproduction (apomictic) depending on cultivar. We developed efficient plant regeneration system for an apomictic (cv. Natsukaze) and a non-apomictic (Noh-PL1) guineagrass by optimizing the level of L-proline in the callus induction and that of $AgNO_3$ in plant regeneration medium. Among the L-proline concentrations tested, the best callus induction was achieved by using 2g/L L-proline in both the genotypes. Immature embryos proved to be the best explant source for tissue culture of guineagrass. The highest frequency of shoot regeneration was obtained on MS plant regeneration medium supplemented with 2 mg/L $AgNO_3$. These results provide a foundation for efficient tissue culture and genetic improvement of guineagrass.
Keywords
L-proline; $AgNO_3$; Immature embryo; Guineagrass; Shoot regeneration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Somleva, M., Z. Tomaszewski, and B. Conger. 2002. Agrobacterium-mediated genetic transformation of switchgrass. Crop Sci. 42:2080-2087.   DOI   ScienceOn
2 Toki S., N. Hara, K. Ono, H. Onodera, A. Tagiri, S. Oka, and H. Tanaka. 2006. Early infection of scutellum tissue with Agrobacterium allows highspeed transformation of rice. The Plant J. 47:969-976.   DOI   ScienceOn
3 Toyama, K., C.H. Bae, J.G. Kang, Y.P. Lim, T. Adachi, K.Z. Riu, P.S. Song, and H.Y. Lee. 2003. Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol Cells. 16:19-27.
4 Vain, P., H. Yean, and P. Flament. 1989. Enhancement and regeneration of embryogenic type II callus in Zea mays L. by $AgNO_3$. Plant Cell Tiss Org Cult. 18:143-151.   DOI
5 Vogel, K.P., J.J. Brejda, D.T. Walters, and D.R. Buxton. 2002. Switchgrass biomass production in the Midwest USA: harvest and nitrogen management. Agron. J. 94:413-420.   DOI   ScienceOn
6 Yamada-Akiyama, H., Y. Akiyama, M. Ebina, Q. Xu, S. Tsuruta, J. Yazaki, N. Kishimoto, S. Kikuchi, M. Takahara, T. Takamizo, S. Sugita, H. Nakagawa. 2009. Analysis of expressed sequence tags in apomictic guineagrass (Panicum maximum). J. Plant Physiol. 166:750-761   DOI   ScienceOn
7 Kojima, A. and Y. Nagato. 1992. Diplosporous embryo-sac formation and the degree of diplospory in Allium tuberosum. Sex. Plant Reprod. 5:72-78.   DOI
8 Lakshmanan, P., J. Geijskes, L. Wang, A. Elliott, C. Grof, N. Berding, G. smith. 2006. Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep. 25:1007-1015.   DOI
9 Mithila, J., J. Hall, J. Victor, P. Saxena. 2003. Thidiazuron induces shoot organogenesis at low concentrations and somatic embryogenesis at high concentrations on leaf and petiole explants of African violet (Saintpaulia ionantha Wendl.). Plant Cell Rep 21:408-414.   DOI
10 Murashige, T. and F. Skoog. 1962. A revise medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15:473-497.   DOI
11 Nakajima, K. and N. Mochizuki. 1983. Degrees of sexuality in sexual plants of guineagrass by the simplified embryo sac analysis. Japan. J. Breed. 33:45-54.   DOI
12 Seo, M.S., M. Takahara, M. Ebina, T. Takamizo. 2008. Evaluation of tissue culture response from mature seeds of Panicum spp. Grassland Sci. 54:125-130.   DOI   ScienceOn
13 O'Neill C.M., A.E. Aurther, R.J. Mathias. 1996. The effect of proline, thioproline and methylglyoxal-bis-(guanylhydrazone) on shoot regeneration frequencies from stem explants of B. napus. Plant Cell Rep. 15:695-698.   DOI   ScienceOn
14 Purnhauser, L., P. Medgyesy, M. Czako, P.H. Dix, L. Marton. 1987. Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginofolia tissue cultures using the ethylene inhibitor $AgNO_3$. Plant Cell Rep. 6:1-4.   DOI   ScienceOn
15 Seo, M.S., M, Takahara, and T, Takamizo. 2010. Optimization of culture condition for plant regeneration of Panicum spp. through somatic embryogenesis. Grassland Sci. 56:6-12.   DOI   ScienceOn
16 Jha, A.K., L.S. Dahleen, J.C. Suttle. 2007. Ethylene influences green plant regeneration from barley callus. Plant Cell Rep. 26:285-290.   DOI
17 Armstrong C.L., C.E. Green. 1985. Establishment and maintenance of friable, embryogenic callus nad the involvement of L-proline. Planta. 164:207-214.   DOI   ScienceOn
18 Felfoldi, K., L. Purnhauser. 1992. Induction of regenerating callus cultures from immature embryos of 44 wheat and 3 triticale cultivars. Cereal Res Commun. 20:273-277.
19 Gondo, T., J. Matsumoto, S. Tsuruta, M. Yoshida, A. Kawakami, F. Terami, M. Ebina, T. Yamada, R. Akashi. 2009. Particle inflow gun-mediated transformation of multiple-shoot clumps in rhodes grass (Chloris gayana). J Plant Physiol. 166:435-441.   DOI   ScienceOn
20 Herr, J. M. Jr. 1982. An analysis of methods for permanently mounting ovules cleared in four-anda-half type clearing fluids. Stain. Technol. 57:161-169.   DOI