Browse > Article
http://dx.doi.org/10.5351/KJAS.2005.18.3.533

Bayesian Model Selection for Linkage Analyses: Considering Collinear Predictors  

Suh, Young-Ju (The Institute of Natural Sciences, Sookmyung Women's University)
Publication Information
The Korean Journal of Applied Statistics / v.18, no.3, 2005 , pp. 533-541 More about this Journal
Abstract
We identify the correct chromosome and locate the corresponding markers close to the QTL in the linkage analysis of a quantitative trait by using the SSVS method. We consider several markers linked to the QTL, as well as to each oyher and thus the i.b.d. values at these loci generate collinear predictors to be evaluated when using the SSVS approach. The results on considering only closely linked markers to two QTL simultaneously showed clear evidence in favor of the closest marker to the QTL considered over other markers. The results of the analysis of collinear markers with SSVS showeed high concordance to those obtained using traditional multiple regression. We conclude based on this simulation study that the SSVS is quite useful to identify linkage with multiple linked markers simultaneously for a complex quantitative trait.
Keywords
QTL; Linkage analysis; SSVS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wijsman, E. M., Almasy, L., Amos, C. I., Borecki, I., Falk, C. T., King, T. M., Martinez, M. M., Meyers, D., Neuman, R., Olson, J. M., Rich, S., Spence, M. A., Thomas, D. C., Vieland, V. J., Witte, J. S. and MacCluer, J. W. (2001). Analysis of complex genetic traits: applications to asthma and simulated data, Genetic Epidemiology, 21(Suppl1), S1-S853   DOI   ScienceOn
2 Xu, X., Weiss, S., Xu, X. and Wei, L. J. (2000). A unified Haseman-Elston method for testing linkage with quantitative traits, American Journal of Human Genetics, 67, 1025-1028   DOI   ScienceOn
3 Yoon, S., Suh, Y. J., Mendell, N. R., Ye, K. Q. (2005). A Bayesian approach for applying Haseman-Elston methods, BMC Genetics, (in press)
4 Chipman, H. (1996). Bayesian variable selection with related predictors, Canadian Journal of Statistics, 24, 17-36   DOI   ScienceOn
5 Elston, R. C., Buxbaum, S., Jacobs, K. B. and Olson, J. M. (2000). Haseman and Elston revisited, Genetic Epidemiology, 19, 1-17   DOI   ScienceOn
6 Forrest, W. F. and Feingold, E. (2000). Composite statistics for QTL mapping with moderately discordant sibling pairs, American Journal of Human Genetics, 66, 1642-1660   DOI   ScienceOn
7 Haseman, J. K. and Elston, R. C. (1972). The investigation of linkage between a quantitative trait and a marker locus, Behavior Genetics, 2, 3-19   DOI   ScienceOn
8 Shete, S., Jacobs, K. B. and Elston, R. C. (2003). Adding further power to the Haseman and Elston method for detecting linkage in larger sibships: weighting sums and differences, Human Heredity, 55, 79-85   DOI   ScienceOn
9 George, E. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling, Journal of the American Statistical Association, 88, 881-889   DOI   ScienceOn
10 Oh, C., Ye, K. Q., He, Q. and Mendell, N. R. (2003). Locating disease genes using Bayesian variable selection with the Haseman-Elston method, BMC Genetics, 4(Suppl), S69
11 Suh, Y. J., Finch, S. J. and Mendell, N. R. (2001). Application of a Bayesian method for optimal subset regression to linkage analysis of Q1 and Q2, Genetic Epidemiology, 21(Suppl1), S706-S711   DOI
12 Suh, Y. J., Ye, K. Q. and Mendell, N. R. (2003). A method for evaluating the results of Bayesian model selection: application to linkage analyses of attributes determined by two or more genes, Human Heredity, 55, 147-152   DOI   ScienceOn
13 Wang, D., Lin, S., Cheng, R., Gao, X. and Wright, F. A. (2001). Transformation of sibpair values for the Haseman-Elston method, American Journal of Human Genetics, 68, 1238-1249   DOI   ScienceOn