1 |
He, S. and Yang, G. L. (1998). Estimation of the truncation probability in the random truncation model, The Annals of Statistics, 26, 1011-1028.
DOI
|
2 |
Birkel, T. (1988). On the convergence rate in the central limit theorem for associated processes, The Annals of Probability, 16, 1685-1698.
DOI
|
3 |
Chen, G. (1997). Berry-Esseen-type bounds for the kernel estimator of conditional distribution and conditional quantiles, Journal of Statistical Planning and Inference, 60, 311-330.
DOI
|
4 |
Cheng, C. (1998). A Berry-Esseen-type theorem of quantile density estimators, Statistics and Probability Letters, 39, 255-262.
DOI
|
5 |
Dewan, I. and Prakasa Rao, B. L. S. (2002). Non-uniform and uniform Berry-Esseen type bounds for stationary associated sequences, Indian Statistical Institute.
|
6 |
Huang, C., Wang, H. and Zhang, L. (2011). Berry-Esseen bounds for kernel estimates of stationary processes, Journal of Statistical Planning and Inference, 141, 1290-1296.
DOI
|
7 |
Isogai, E. (1994). A Berry-Esseen-type bound for recursive estimators of a density and its derivatives, Journal of Statistical Planning and Inference, 40, 1-14.
DOI
|
8 |
Liang, H. and Baek, J. (2008). Berry-Esseen bounds for density estimates under NA assumption, Metrika, 68, 305-322.
DOI
|
9 |
Liang, H. Y. and Una-Alvarez, J. (2009). A Berry-Esseen type bound in kernel density estimation for strong mixing censored samples, Journal of Multivariate Analysis, 100, 1219-1231.
DOI
|
10 |
Lynden-Bell, D. (1971). A method of allowing for known observational selection in small samples applied to 3CR quasars, Monthly Notices of the Royal Astronomical Society, 155, 95-118.
DOI
|
11 |
Ould-Said, E. and Tatachak, A. (2009). On the non-parametric estimation of the simple mode under random left-truncation model, Revue Roumaine de Mathematiques Pures et Appliquees, 54, 243-266.
|
12 |
Petrov, V. V. (1995). Limit Theorems of Probability Theory, Oxford University Press Inc., New York.
|
13 |
Prakasa Rao, B. L. S. (1975). Berry-Esseen type bound for density estimation of stationary Markov processes, Indian Statistical Institute, 15-21.
|
14 |
Sun, L. and Zhu, L. (1999). A Berry-Esseen type bound for Kernel Density Estimators under Random Censorship, Acta Mathematica Sinica, 42, 627-636.
|
15 |
Woodroofe, M. (1985). Estimating a distribution function with truncated data, The Annals of Statistics, 13, 163-177.
DOI
|
16 |
Yang, W., Hu, S., Wang, X. and Ling, N. (2012). The Berry-Esseen type bound of sample quantiles for strong mixing sequence, Journal of Statistical Planning and Inference, 142, 660-672.
DOI
|
17 |
Zhou, Y., Wu, G. and Li, D. (2006). A kernel-type estimator of a quantile function under randomly truncated data, Acta Mathematica Scientia, 26B, 585-594.
|
18 |
Chang, M. N. and Rao, P. V. (1989). Berry-Esseen bound for the Kaplan-Meier estimator, Communications in Statistics - Theory Methods, 18, 4647-4664.
DOI
|