Browse > Article
http://dx.doi.org/10.5351/CKSS.2012.19.2.219

Influences of Dependence Degrees of a Component for the Mean Time to Failure of a System  

Kim, Dae-Kyung (Department of Statistics, Chonbuk National University)
Oh, Ji-Eun (Department of Statistics, Chonbuk National University)
Publication Information
Communications for Statistical Applications and Methods / v.19, no.2, 2012 , pp. 219-224 More about this Journal
Abstract
This article considers the mean time to failure(MTTF) of a dependent parallel system. We study how the degree of dependency components influences the increase in the mean lifetime for this system. The results are illustrated by tables and figures.
Keywords
Dependent parallel system; Bivariate Weibull model; MTTF;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gumbel, E. J. (1960). Bivariate exponential distributions, Journal of the American Statistical Association, 56, 698-707.
2 Hanagal, D. D. (1996). A multivariate Weibull distribution, Econ Qual Control, 11, 193-200.
3 Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distribution - 1, Houghton Mifflin Company, Boston.
4 Lehmann, E, L. (1966). Some concepts of dependence, Annals of Mathematical Statistics, 37, 1137-1153.   DOI
5 Lu, J. C. (1989). Weibull extension of the Freund and Marshall-Olkin bivariate exponential models, IEEE Transaction on Reliability, 38, 615-619.   DOI   ScienceOn
6 Lu, J. C. and Bhattachrayya, G. K. (1990). Some new constructions of bivariate Weibull models, Annals of Institute of Statistical Mathematics, 42, 543-559.   DOI
7 Marshall, A. W. and Olkin, I. A. (1967). A multivariate exponential distribution, Journal of the American Statistical Association, 62, 30-44.   DOI   ScienceOn
8 Mino, T., Yoshikawa, N., Suzuki, K., Horikawa, Y. and Abe, Y. (2003). The mean of lifespan under dependent competing risks with application to mice data, Journal of Health and Sports Science, Juntendo University, 7, 68-74.
9 Moeschberger, M. L. (1974). Life tests under dependent competing causes of failure, Technometrics, 16, 39-47.   DOI   ScienceOn
10 Murthy, D. N. P. and Nguyen, D. G. (1985). Study of two component system with Failure interaction, Naval Research Logistics Quarterly, 32, 239-247.   DOI
11 Rachev, S. T., Wu, C. and Yakovlev, A. Y. (1995). A bivariate limiting distribution of tumor latency time, Mathematical Biosciences, 127, 127-147.   DOI   ScienceOn
12 Freund, J. E. (1961). A bivariate extension of the exponential distribution, Journal of the American Statistical Association, 56, 971-977.   DOI   ScienceOn
13 Balakrishnan, N. and Lai, C. D. (2009). Continuous Bivariate Distributions, Springer.
14 Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65, 141-151.   DOI   ScienceOn
15 Esary, F. D. and Proschan, F. (1970). A reliability bound for systems of maintained interdependent components, Journal of the American Statistical Association, 65, 329-338.   DOI   ScienceOn