Browse > Article
http://dx.doi.org/10.5351/CKSS.2006.13.3.755

Graphical Methods for Hierarchical Log-Linear Models  

Hong, Chong-Sun (Department of Statistics, Sungkyunkwan University)
Lee, Ui-Ki (Research Institute of Applied Statistics, Sungkyunkwan University)
Publication Information
Communications for Statistical Applications and Methods / v.13, no.3, 2006 , pp. 755-764 More about this Journal
Abstract
Most graphical methods for categorical data can describe the structure of data and represent a measure of association among categorical variables. Among them the polyhedron plot represents sequential relationships among hierarchical log-linear models for a multidimensional contingency table. This kind of plot could be explored to describe the differences among sequential models. In this paper we suggest graphical methods, containing all the information, that reflect the relationship among all log-linear models in a certain hierarchical structure. We use the ideas of a correlation diagram.
Keywords
Goodness of fit; hierarchical model; likelihood ratio statistics; log-linear model; measure of association; odds ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hartigan, J.A. and Kleiner, B. (1984). A mosaic of the television ratings. American Statisticians, Vol. 38, 32-35   DOI
2 Barrowman, N.J. and Myers, R.A. (2000). Still more spawner-recruitment curves: the hockey stick and its generalizations. Canadian Journal of Fisheries and Aquatic Sciences, Vol. 57, 665-676   DOI
3 Yamamoto, E. and Doi, M. (2001) Noncollapsibility of common odds ratios without/with confounding. Bulletin of The 53rd Session of the International Statistical Institute, Book 3, 39-40
4 Li, X., Buechner, J.M., Tarwater, P.M., and Munoz, A. (2003). A diamond -shaped equiponderant graphical display of the effects of two categorical predictors on continuous outcomes. American Statisticians, Vol. 57, 193-199   DOI   ScienceOn
5 Christensen, R. (1990). Log-Linear Models and Logistic Regression, Springer, New York
6 Ries, P.N. and Smith, H. (1963). The use of chi-square for preference testing In multidimensional problems. Chemical Engineering Progress, Vol. 59, 39-43
7 Fienberg, S.E. (1968). The Estimation of Exponential Probabilities in Two-way Contingency Tables, Ph. D. Thesis, Department of Statistics, Harvard University
8 Fienberg, S.E. (1983). The Analysis of Cross-Classified Categorical Data, MIT Press
9 Becker, R.A., Cleveland, W.S., and Shyu, M.J. (1996). The visual design and control of trellis display. Journal of Computational and Graphical Statistics. Vol. 6(2), 123-155
10 Trosset. M.W. (2005). Visualizing correlation. Journal of Computational and Graphical Statistics, Vol. 14, 1-19   DOI   ScienceOn
11 Tufte, E.R. (1983). The Visual Display of Quantitative Information, Graphics Press. Cheshire, Connecticut
12 Tukey, J.W. (1977). Exploratory Data Analysis, Addison-Wesley Publishing Company
13 Friendly, M. (1992). Mosaic displays for log-linear models, proceedings of the statistical graphics section. American Statistical Association, 61-68
14 Wilkinson, L. (1999). The Grammar of Graphics, Springer, New York
15 Doi, M., Nakamura, T., and Yamamoto, E. (2001). Conservative tendency of the crude odds ratio. Journal of Japan Statistical Society, Vol. 31(1), 53-65   DOI
16 Fienberg, S.E. and Gilbert, J.P. (1970). The geometry of a $2{\times}2$ contingency tables. Journal of American Statistical Association, Vol. 65, 694-701   DOI
17 Fienberg, S.E. (1975). Perspective canada as a social report. Social Indicators Research, Vol. 2, 154-174
18 Friendly, M. (1991). The SAS System for Statistical Graphics, SAS Institute Inc
19 Friendly, M. (1994a). Mosaic displays for multi-way contingency tables. Journal of American Statistical Association, Vol. 89, 190-200   DOI
20 Friendly, M. (1994b). SAS/IML graphics for fourfold displays. Observations, Vol. 3(4), 47-56
21 Gabriel, K.R. (1971). The biplot graphical display of matrices with applications to principal component analysis. Biometrika, Vol. 58, 453-467   DOI   ScienceOn
22 Gay, D.M. (1983). Algorithm 611. subroutines for unconstrained minimization using a model / trust-region approach. ACM Transactions on Mathematical Software, Vol. 9, 503-524   DOI   ScienceOn
23 Gay, D.M. (1984). A trust region approach to linearly constrained optimization, Numerical Analysis, Proceedings, Dundee 1983, ed. F.A. Lootsma, Berlin: Springer, 171-189
24 Hartigan, J.A. and Kleiner, B. (1981). Mosaic for contingency tables. Com -puter Science and Statistics, Proceedings of the 13th Symposium on the Interface, ED. W. F. Eddy, New York: Springer-Verlag, 268-273
25 Hong, C.S., Choi. H.J., and Oh, M.G. (1999). Geometric descriptions for hierarchical log-linear models, InterStat, September, 1999. InterStat on the Internet
26 Cohen, A. (1980). On the graphical display of the significant components in a two-way contingency table. Communications in Statistics-Theory and Methods, Vol. 9, 1025-1041   DOI
27 Barrowman, N.J. and Myers, R.A. (2003). Raindrop plots: a new way to display collections of likelihoods and distributions. American Statistician, Vol. 57, 268-274   DOI   ScienceOn
28 Bishop, Y.M.M., Fienberg, S.E., and Holland P.W. (1975). Discrete Multivariate Analysis, MIT Press
29 Cleveland, W.S. and McGill, R. (1984), Graphical perception: theory, experimentation, and application to the development of graphical methods. Journal of American Statistical Association, Vol. 79(387), 531-554   DOI
30 Corsten, L.C.A. and Gabriel, K.R. (1976). Graphical exploration in comparing variance matrice. Biometrics, Vol. 32, 851-863   DOI   ScienceOn
31 Darroch, J.N., Lauritzen, S.L., and Speed, T.P. (1980). Markov-fields and log-linear models for contingency tables. Annals of Statistics, Vol. 8, 522-39   DOI