Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.3.433

Flame Retardancy and Physical Properties of Ethylene Vinyl Acetate/Aluminum Trihydroxide Composites  

Lee, Minho (Green Process and Material R&D Group, Korea Institute of Industrial Technology)
Yu, Dayeong (Green Process and Material R&D Group, Korea Institute of Industrial Technology)
Kim, Yeongho (Department of Chemical Engineering, University of Suwon)
Lee, Sunghee (Department of Chemical Engineering, University of Suwon)
Kim, Jeong Ho (Department of Chemical Engineering, University of Suwon)
Lee, Young Chul (Green Process and Material R&D Group, Korea Institute of Industrial Technology)
Publication Information
Polymer(Korea) / v.39, no.3, 2015 , pp. 433-440 More about this Journal
Abstract
Aluminum trihydroxide (ATH) has been commonly employed as a flame retardant for ethylene vinyl acetate (EVA) copolymers. In the present work, ATH was obtained from a recycling process of multi-layer packaging film wastes. EVA/ATH composite samples were prepared using a two roll-mill and flame retardancy of EVA/ATH composites were examined using limiting oxygen index (LOI) and flame retardancy test (UL94). We observed excellent flame retardancy in case of adding 150 phr or more of recycled ATH to EVA. Particle size and specific surface area play crucial roles in LOI value and UL-94 classification of the EVA/ATH composites. Smaller particle size and higher specific surface area of ATH was found out to improve the flame retardancy. Regarding tensile properties, crosslinked EVA/ATH compounds which is practically used for electric cables had similar to or even better tensile property values than the ones without ATH.
Keywords
recycled aluminum trihydroxide; limiting oxygen index; UL-94 test; ethylene vinyl acetate copolymer; recycling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. H. Huang, Z. J. Chen, C. H. Yi, and J. Q. Wang, eXPRESS Polym. Lett., 4, 227 (2010).   DOI
2 M. L. Rosa, A. Tankink, and M. Hoch, Proceedings of the 57th International Wire and Cable Symposium, 125 (2008).
3 L. Zhang, C. Z. Li, Q. Zhou, and W. Shao, J. Mater. Sci., 42, 4227 (2007).   DOI
4 J. R. Lee, C. S. Choi, and H. J. Kang, Polym. Korea, 33, 131 (2009).
5 S. J. Kim, B. S. Shin, J. L. Hong, W. J. Cho, and C. S. Ha, Polymer, 42, 4073 (2001).   DOI   ScienceOn
6 T. S. Hwang, B. J. Lee, Y. K. Yang, J. H. Choi, and H. J. Kim, Prospectives of Industrial Chemistry, 8, 36 (2005).
7 R. N. Rothon and P. R. Hornsby, Polym. Degrad. Stabil., 54, 383 (1996).   DOI   ScienceOn
8 G. Beyer, Fire Mater., 25, 193 (2001).   DOI   ScienceOn
9 X. Zhang, F. Guo, J. Chen, G. Wang, and H. Liu, Polym. Degrad. Stabil., 87, 411 (2005).   DOI   ScienceOn
10 M. A. Cardenas, D. Garcia-Lopez, I. Gobernado-Mitrea, J. C. Merino, J. M. Pastor, J. D. D. Martnez, J. Barbeta, and D. Calveras, Polym. Degrad. Stabil., 93, 2032 (2008).   DOI   ScienceOn
11 D. Price, F. Gao, G. J. Milnes, B. Eling, C. I. Lindsay, and P. T. McGrail, Polym. Degrad. Stabil., 64, 403 (1999).   DOI   ScienceOn
12 Y. C. Lee and H. C. Lee, Korean Patent 0528646 (2005).
13 D. J. Hwang, K. H. Cho, M. K. Choi, J. W. Ahn, C. Han, and J. D. Lee, Korean Chem. Eng. Res., 48, 205 (2010).
14 K. Thaworn, P. Buahom, and S. Areerat, Open J. Polym. Chem., 2, 77 (2012).   DOI