Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.1.174

Alignments of Reactive Mesogen Using Rubbed Glass Substrates  

Lee, Mongryong (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University)
Bae, Jin Woo (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University)
Kim, Anna (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University)
Yun, Hyeong Seuk (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University)
Song, Kigook (Dept. of Advanced Materials Engineering for Information and Electronics, Materials Research Center for Information Display, Kyung Hee University)
Publication Information
Polymer(Korea) / v.39, no.1, 2015 , pp. 174-179 More about this Journal
Abstract
Alignments of photo-reactive mesogen were induced using bare glass substrates without a polymer alignment layer. It was found by using polarized FTIR spectroscopy, polarized microscopy, and birefringence measurement experiments that the reactive mesogen could be aligned along the rubbing direction although the glass substrate without an alignment layer was used. The induction mechanism of the rubbed bare glass is ascribed to that polymers from rubbing clothes are coated on the glass substrate along the rubbing direction and lead the alignment of liquid crystals through intermolecular interactions.
Keywords
reactive mesogen; rubbing; retardation film; alignment layer; spectroscopy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. McCulloch, W. Zhang, M. Heeney, C. Bailey, M. Giles, D. Graham, M. Shkunov, D. Sparrowe, and S. Tierney, J. Mater. Chem., 13, 2436 (2003).   DOI   ScienceOn
2 W. Warta, R. Stehle, and N. Karl, Appl. Phys. A, 36, 163 (1985).
3 F. M. Mirabella, Jr., J. Poym. Sci. Part B: Polym. Phys., 25, 591 (1986).
4 G. Jung, M. Lee, I. Seo, and K. Song, Polymer(Korea), 35, 272 (2011).
5 G. Jung, I. Seo, M. Lee, S.-W. Choi, and K. Song, Polymer (Korea), 34, 242 (2010).
6 Y. V. Kissin and L. A. Rishina, Eur. Polym. J., 12, 757 (1988).
7 M. Lee, M. Y. Shin, S. H. Kim, and K. Song, Polymer(Korea), 35, 493 (2001).
8 S. Chandrasekhar, Liquid Crystals, 2nd ed, Cambridge University Press, Cambridge, 1992.
9 P. Yeh and C. Gu, Optics of Liquid Crystal Displays, John Wiley & Sons, Canada, 1999.
10 J. Stohr and M. G. Samant, J. Electron. Spectrosc. Relat. Phenom., 98-99, 189 (1999).   DOI   ScienceOn
11 Y. Inoue, Y. Kuramoto, M. Hattori, M. Adachi, M. Kimura, and T. Akahane, J. Inf. Disp., 12, 125 (2011).   DOI
12 D. S. Seo, S. Kobayashi, and M. Nishikawa, Appl. Phys. Lett., 62, 2392 (1992).
13 B. S. Ban and Y. B. Kim, J. Am. Chem. Soc., 103, 3869 (1999).
14 E. S. Lee, P. Vetter, T. Miyahita, and T. Uchida, Jpn. J. Appl. Phys., 32, L1339 (1993).   DOI   ScienceOn
15 M. G. Samant, J. Stohr, H. R. Brown, T. P. Russell, J. M. Sands, and S. K. Kumar, Macromolecules, 29, 8334 (1996).   DOI   ScienceOn
16 S. W. Lee, S. J. Lee, S. G. Hahm, T. J. Lee, B. Lee, B. Chae, S. B. Kim, J. C. Jung, W. C. Zin, B. H. Sohn, and M. Ree, Macromolecules, 38, 4331 (2005).   DOI   ScienceOn
17 B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, J. Phys. Chem. B, 107, 11911 (2003).   DOI   ScienceOn
18 B. S. Ban, Y. N. Rim, and Y. B. Kim, Liq. Cryst., 27, 125 (2000).   DOI   ScienceOn
19 W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, Nature, 351, 49 (1991).   DOI
20 K. Ichimura, Chem. Rev., 100, 1847 (2000).   DOI   ScienceOn
21 M. O'Neill and S. M. Kelly, J. Phys. D: Appl. Phys., 33, R67 (2000).   DOI
22 M. Obi, S. Morino, and K. Ichimura, Chem. Mater., 11, 656 (1996).
23 P. O. Jackson, M. Oneill, W. L. Duffy, P. Hindmarsh, S. M. Kelly, and G. Owen, Chem. Mater., 13, 694 (2001).   DOI   ScienceOn
24 S. W. Lee, T. Chang, and M. Ree, Macromol. Rapid Commun., 22, 941 (2001).   DOI
25 B. Chae, S. W. Lee, Y. M. Jung, M. Ree, and S. B. Kim, Langmuir, 19, 687 (2003).   DOI   ScienceOn
26 S. W. Lee, S. I. Kim, B. Lee, H. C. Kim, T. Chang, and M. Ree, Langmuir, 19, 10381 (2003).   DOI   ScienceOn
27 S. W. Lee and M. Ree, J. Polym. Sci. Part A: Polym. Chem., 42, 1322 (2004).   DOI
28 S. W. Lee, S. I. Kim, B. Lee, W. Choi, B. Chae, S. B. Kim, and M. Ree, Macromolecules, 36, 6527 (2003).   DOI   ScienceOn
29 M. Hasegawa, Jpn. J. Appl. Phys., 38, L457 (1999).   DOI
30 Z. Suna, A. Qina, Z. Chena, and Y. Wanga, Liq. Cryst., 37, 345 (2010).   DOI   ScienceOn
31 A. Y.-G. Fuh, C.-K. Liu, K.-T. Cheng, C.-L. Ting, C.-C. Chen, P. C.-P. Chao, and H.-K. Hsu, Appl. Phys. Lett., 95, 161104 (2009).   DOI   ScienceOn
32 D. Coates, O. Parri, M. Verrall, K. Slaney, and S. Marden, Macromol. Symp., 154, 59 (2000).
33 L. H. Wu, S. Luo, C. S. Hsu, and S. T. Wu, Jpn. J. Appl. Phys., 39, 5899 (2000).   DOI
34 F. Li, F. W. Harris, and S. Z. D. Cheng, Polymer, 37, 5321 (1996).   DOI   ScienceOn
35 C. D. Hoke, H. Mori, and P. J. Bos, Jpn. J. Appl. Phys., 38, L642 (1999).   DOI
36 W.-Y. Wu, C.-C. Wang, and A. Y. Fuh, Opt. Express, 16, 17131 (2008).   DOI
37 Y.-C. Yang and D.-K. Yang, J. Opt. A: Pure Appl. Opt., 11, 105502 (2009).   DOI