Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.4.464

Preparation and Characterization of Poly(lactic acid) Nanocomposites Reinforced with Lignin-containing Cellulose Nanofibrils  

Sun, Haibo (MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University)
Wang, Xuan (MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University)
Zhang, Liping (MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University)
Publication Information
Polymer(Korea) / v.38, no.4, 2014 , pp. 464-470 More about this Journal
Abstract
A chemo-mechanical method was used to prepare lignin-containing cellulose nanofibrils(L-CNF) from unbleached woodpulps dispersed uniformly in an organic solvent. L-CNF/PLA composites were obtained by solvent casting method. The effects of L-CNF concentration on the composite performances were characterized by tensile test machine, contact angle machine, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). The tensile test results indicated that the tensile strength and elongation-at-break increased by 50.6% and 31.8% compared with pure PLA. The contact angle of PLA composites decreased from $79.3^{\circ}$ to $68.9^{\circ}$. The FTIR analysis successfully showed that L-CNF had formed intermolecular hydrogen bonding with PLA matrix.
Keywords
lignin-containing cellulose nanofibrils; poly(lactic acid); nanocomposites; reinforcement;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. L. Spence, R. A. Venditti, and O. J. Rojas, Cellulose, 17, 835 (2010).   DOI
2 S. H. Lee, D. J. Kim, and J. H. Kim, Polymer(Korea), 28, 519 (2004).
3 K. M. Zakir and C. D. Rudd, J. Mater. Sci., 47, 2675 (2012).   DOI
4 J. H. Lee, Y. H. Lee, and D. S. Lee, Polymer(Korea), 29, 375 (2005).
5 K. Oksman, A. P. Mathew, and D. Bondeson, Compos. Sci. Technol., 66, 2776 (2006).   DOI   ScienceOn
6 J. F. Kadla and S. Kubo, Composites A, 35, 395 (2004).   DOI   ScienceOn
7 P. Mousaviouna, O. S. William, and G. Georgeb, Ind. Crop. Prod., 32, 656 (2010).   DOI   ScienceOn
8 M. Agarwal, K. W. Koelling, and J. J. Chalmers, Biotechnol. Progr., 14, 517 (1998).   DOI   ScienceOn
9 T. Miyata and T. Masuko, Polymer, 39, 551 (1998).
10 M. Barsbay and A. Guner, Carbohydr. Polym., 69, 214 (2007).   DOI   ScienceOn
11 J. H. Yang, J. G. Yu, and Y. Feng, Carbohydr. Polym., 69, 256 (2006).
12 P. Mangiacapra, G. Gorrasi, and A. Sorrentino, Carbohydr. Polym., 64, 516 (2005).
13 S. I. Marras and I. Zuburtikudis, Eur. Polym. J., 43, 2191 (2007).   DOI   ScienceOn
14 H. Anuar, A. Zuraida, and J. G. Kovacs, J. Thermoplast. Compos., 25, 153 (2012).   DOI
15 R. Mat Taib, Z. A. Ghaleb, and Z. A. Mohd Ishak, J. Appl. Polym. Sci., 123, 2715 (2012).   DOI   ScienceOn
16 M. Farhoodi, S. Dadashi, and F. Hemmati, Polymer(Korea), 36, 745 (2012).
17 L. J. Chun and H. Yong, Polym. Int., 52, 949 (2003).   DOI   ScienceOn
18 S. Beck-Candanedo, M. Roman, and D. G. Gray, Biomacromolecules, 6, 1048 (2005).   DOI   ScienceOn
19 N. Takahashi and K. Okubo, Bamboo. J., 22, 81 (2005).
20 D. Bondeson, A. Mathew, and K. Oksman, Cellulose, 13, 171 (2006).   DOI   ScienceOn
21 W. Tao and D. T. Lawrence, ACS Appl. Mater. Interfaces, 10, 1021 (2010).
22 M. N. Angles and A. Dufresne, Macromolecules, 34, 2921 (2001).   DOI   ScienceOn
23 M. A. Samir, F. Alloin, and J. Y. Sanchez, Macromolecules, 37, 4839 (2004).   DOI   ScienceOn
24 K. S. Kang, B. S. Kim, W. Y. Jang, and B. Y. Shin, Polymer (Korea), 32, 164 (2009).
25 E. Green, E. Stutte, and P. T. C. Harrison, Sci. Total Environ., 256, 205 (2006).
26 C. S. Wu, Micromol. Biosci., 8, 560 (2008).   DOI   ScienceOn
27 B. Xiao, X. F. Sun, and R. Sun, Polym. Degrad. Stab., 71, 223 (2001).   DOI   ScienceOn
28 C. S. Wu and H. T. Liao, Polymer, 46, 10017 (2005).   DOI   ScienceOn