Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.4.441

Synthesis of Melamine Phosphate-Polyurethane Composite Foam Blown by Water and Characterization of Its Thermal Properties  

Park, Kyeong-Kyu (Department of Chemical Engineering, Dong-A University)
Lee, Sang-Ho (Department of Chemical Engineering, Dong-A University)
Publication Information
Polymer(Korea) / v.38, no.4, 2014 , pp. 441-448 More about this Journal
Abstract
Polyurethane/melamine phosphate composite foam (MP-PUF) was prepared from poly(adipate)diol/melamine phosphate composite (f=2), polyether-polyol (f=4.6), and PMDI (f=2.5). The thermal properties of MP-PUF such as morphology, closed-cell content, thermal conductivity, and thermal stabilities were characterized. Water was used as a blowing agent, and the composition of melamine phosphate (MP) was maintained at $1.43{\pm}0.3wt%$ of MP-PUF. As the content of water increased, the thermal conductivity of pure polyurethane foam (PUF) decreased, whereas the thermal conductivity of MP-PUF increased. The thermal stabilities of the PUF and the MP-PUF were maximized at 5 php $H_2O$, and then decreased at the higher $H_2O$ contents. The thermal stabilities of MP-PUF were greatly enhanced due to the synergetic effect of MP and urea, which was generated during the blowing process. The temperature of 50% residual mass of MP-PUF increased to $370{\sim}450^{\circ}C$ and the temperature of 30% residual mass exceeded over $700^{\circ}C$. Compared to the PUF, the temperature of 50% residual mass and 30% residual mass were higher than 25 and $70^{\circ}C$, respectively.
Keywords
polyurethane foam; melamine phosphate; composites; themal conductivity; thermal stabilities;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Jahromi, W. Gabrielse, and A. Braam, Polymer, 44, 25 (2003).   DOI   ScienceOn
2 S. S. Kim and J. N. Park, Polym. Sci. Tech., 10, 614 (1999).
3 U. Jarfelt and O. Ramnas, The 10th International Symposium on District Heating and Cooling, September 3-5, Hanover (2006).
4 H. Lim, S. H. Kim, and B. K. Kim, J. Appl. Polym. Sci., 110, 49 (2008).   DOI   ScienceOn
5 H. Lim, S. H. Kim, and B. K. Kim, Polym. Adv. Technol., 19, 1729 (2008).   DOI   ScienceOn
6 W. J. Seo, Y. T. Sung, S. B. Kim, K. H. Choe, J. Y. Sung, and W. N. Kim, J. Appl. Polym. Sci., 102, 3764 (2006).   DOI   ScienceOn
7 M. C. Saha, Md. E. Kabir, and S. Jeelani, Mater. Sci. Eng. A, 479, 213 (2008).   DOI   ScienceOn
8 C. B. Kim, W. J. Seo, O. D. Kwon, and S. B. Kim, Appl. Chem. Eng., 22, 540 (2011).
9 A. Lorenzetti, M. Modesti, S. Besco, D. Hrelja, and S. Danadi, Polym. Degrad. Stabil., 96, 1455 (2011).   DOI   ScienceOn
10 K. K. Park and S. H. Lee, Elastom. Compos., 46, 343 (2011).
11 L. Shufen, J. Zhi, Y. Kaijun, and Y. Shuqin, Polym. Plast. Technol. Eng., 45, 95 (2006).   DOI   ScienceOn
12 A. B. Morgan and C. A. Wilkie, Flame Retardant Polymer Nanocomposites, John Wiley & Sons Inc, New Jersey, USA, 2007.
13 G. Camino, L. Costa, and G. Martinasso, Polym. Degrad. Stabil., 23, 359 (1989).   DOI   ScienceOn
14 S. H. Kim, M. C. Lee, H. D. Kim, H. C. Park, H. M. Jeong, K. S. Yoon, and B. K. Kim, J. Appl. Polym. Sci., 117, 1992 (2010).   DOI   ScienceOn
15 S. Bourbigot, M. L. Bras, R. Delobel, P. Brant, and J. M. Trmillon, Carbon, 33, 283 (1995).   DOI   ScienceOn
16 M. Thirumal, D. Khastgir, G. B. Nando, Y. P. Naik, and N. K. Singha, Polym. Degrad. Stabil., 95, 1138 (2010).   DOI   ScienceOn