Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.1.80

Baroplastic Properties of Core-double Shell Type Nanoparticles Consisting of Crosslinked PS as a Core and PBA and PS as Shells  

Park, Ji-Young (Department of Engineering Chemistry, College of Engineering, Chungbuk National University)
Ryu, Sang-Woog (Department of Engineering Chemistry, College of Engineering, Chungbuk National University)
Publication Information
Polymer(Korea) / v.38, no.1, 2014 , pp. 80-84 More about this Journal
Abstract
Polymer nanoparticles with cross-linked core and PBA/PS double-shell were synthesized and their baroplastic properties were characterized. PBA/PS, the inner and outer shell with cross-linked core consisting of St and DVB were synthesized by three-stage emulsion polymerization. The obtained materials exhibited pressure-induced mixing of their components and could be processed at $25^{\circ}C$ by compression molding which means there was no effect of the presence of cross-linked core. Interestingly, the Young's modulus of molded objects has found to be affected strongly by the size of double-shell nanoparticles. Furthermore, the molded object of higher PBA content was successfully recycled 5 times at $25^{\circ}C$ and showed 0.55 MPa of modulus and 1.81 MPa of strength at break.
Keywords
emulsion; double-shell; modulus; baroplastic; recycle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Odian, Principles of Polymerization, John Wiley & Sons, New York, 1991.
2 V. L. Dimonie, E. S. Daniels, O. L. Shaffer, and M. S. El-Aasser, Emulsion Polymerization and Emulsion Polymers, P. A. Lowell and M. S. El-Aasser, Editors, Wiley, New York, 1997.
3 O. Kalinina and E. Kumacheva, Macromolecules, 34, 6380 (2001).   DOI   ScienceOn
4 H. Keskkula and D. R. Paul, "Toughening Agents for Engineering Polymers," in Rubber Toughened Engineering Plastics, A. A. Collier, Editor, Springer, Netherlands, Chapter 5, p 136 (1994).
5 K. Landfester, C. Boeffel, M. Lambla, and H. W. Spiess, Macromolecules, 29, 5972 (1996).   DOI   ScienceOn
6 Y. Zhao and M. W. Urban, Macromolecules, 33, 8426 (2000).   DOI   ScienceOn
7 J. A. Gonzales-Leon, S. W. Ryu, S. A. Hewlett, S. H. Ibrahim, and A. M. Mayes, Macromolecules, 38, 8036 (2005).   DOI   ScienceOn
8 M. J. Kim, Y. Choi, and S. W. Ryu, Polymer(Korea), 32, 573 (2008).
9 D. A. Hajduk, P. Urayama, S. M. Gruner, S. Erramilli, R. A. Register, K. Brister, and L. J. Fetters, Macromolecules, 28, 7148 (1995).   DOI   ScienceOn
10 M. Pollard, T. P. Russell, A. V. Ruzette, A. M. Mayes, and Y. Gallot, Macromolecules, 31, 6493 (1998).   DOI   ScienceOn
11 A. V. Ruzette, P. Banerjee, A. M. Mayes, and T. P. Russell, J. Chem. Phys., 114, 8205 (2001).   DOI   ScienceOn
12 D. Y. Ryu, D. J. Lee, J. K. Kim, K. A. Lavery, T. P. Russell, Y. S. Han, C. H. Lee, and P. Thiyagarajan, Phys. Rev. Lett., 90, 235501 (2003).   DOI   ScienceOn
13 J. Cho and Z. G. Wang, Macromolecules, 39, 4576 (2006).   DOI   ScienceOn
14 J. Cho, K. Shin, K. S. Cho, Y. S. Seo, S. K. Satija, D. Y. Ryu, and J. K. Kim, Macromolecules, 41, 955 (2008).   DOI   ScienceOn
15 K. H. Lee and S. W. Ryu, Macromol. Res., 20, 1294 (2012).   DOI   ScienceOn
16 J. A. Gonzales-Leon, M. H. Acar, S. W. Ryu, A. V. Ruzette, and A. M. Mayes, Nature(London), 426, 424 (2003).   DOI   ScienceOn