Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.2.240

Study on Cure Behavior of Low Temperature and Fast Cure Epoxy with Mercaptan Hardener  

Eom, Se Yeon (Department of Polymer Science and Engineering, Chungnam National University)
Seo, Sang Bum (Korea Taconic)
Lee, Kee Yoon (Department of Polymer Science and Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.37, no.2, 2013 , pp. 240-248 More about this Journal
Abstract
The curing behaviors of diglycidyl ether of bisphenol A (DGEBA) with mercaptan hardener were studied by the comparison with amine-adduct type hardener. Curing behaviors were evaluated by DSC at dynamic and isothermal conditions. In the DSC, the dynamic experiments were based on the method of Kissinger's equation, and the isothermal experiments were fitted to the Kamal's kinetic model. Activation energy of epoxy/amine-adduct type hardener was ca. 40 kcal/mol. As the functional group of mercaptan hardener, -SH increased, on epoxy/mercaptan hardeners, the activation energies decreased from 28 to 19 kcal/mol. Epoxy/amine-adduct type hardener was initiated at $90^{\circ}C$ or higher. However, epoxy/mercaptan hardeners reduced the initiation temperatures below $80^{\circ}C$ and shortened the durations of curing reaction within 10 min. We found out that the reaction kinetics of epoxy with mercaptan hardener followed the autocatalytic reaction models, and the maximum reaction rates were shown at the conversions of 20~40%.
Keywords
epoxy resin; mercaptan; cure kinetics; autocatalytic; differential scanning calorimetry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. E. Camargo, V. M. Gonzalez, and C. W. Macosko, Rubber Chem. Tech., 56, 774 (1983).   DOI   ScienceOn
2 M. R. Keenan, Appl. Polym. Sci., 33, 1725 (1987).   DOI   ScienceOn
3 H. H. Winter, Polym. Eng. Sci., 27, 1698 (1987).   DOI
4 H. E. Kissinger, Anal. Chem., 29, 1702 (1957).   DOI
5 Y. Deng and G. C. Martin, Macromolecules, 27, 5147 (1994).   DOI   ScienceOn
6 E. A. Turi, Thermal Characterization of Polymeric Materials, 2nd edition, Academic Press, San Diego, 1981.
7 C. W. Wise, W. D. Cook, and A. A. Goodwin, Polymer, 38, 3251 (1997).   DOI   ScienceOn
8 F. G. A. E. Huguenin and M. T. Klein, Ind. Eng. Chem. Proc. Res. Dev., 24, 166 (1985).   DOI
9 B. S. Kim, T. Chiba, and T. Inoue, Polymer, 34, 2809 (1993).   DOI   ScienceOn
10 M. T. Aronhime and J. K. Gillham, Adv. Polym. Sci., 78, 83 (1986).   DOI
11 S. Han, W. G. Kim, H. G. Yoon, and T. J. Moon, J. Appl. Polym. Sci., 68, 1125 (1998).   DOI
12 C. S. Chern and G. W. Poehlein, Polym. Eng. Sci., 27, 788 (1987).   DOI   ScienceOn
13 D. H. Kim and S. C. Kim, Polym. Bull., 18, 533 (1987).
14 U. Khanna and M. Chanda, J. Appl. Polym. Sci., 49, 319 (1993).   DOI   ScienceOn
15 J. Wan, C. Li, Z. Bu, C. Xu, B. Li, and H. Fan, J. Chem. Eng., 188 (2012).
16 D. J. Kim, S. H. Lee, and M. R. Seo, Appl. Chem., 9, 542 (2004).
17 G. Jungang, L. Deling, S. Shigang, and L. Guodong, J. Appl. Polym. Sci., 83, 1586 (2002).   DOI   ScienceOn
18 C. D. Doyle, Anal. Chem., 33, 77 (1961).   DOI
19 G. Wisanrakkit and J. K. Gillham, J. Appl. Polym. Sci., 41, 2885 (1990).   DOI
20 A. Yousefi, P. G. LaJleur, and R. Gauuin, Polym. Comp., 18, 157 (1997).   DOI   ScienceOn
21 T. Hatakeyama and Z. Liu, Editors, Handbook of Thermal Analysis, John Wiley & Sons, New York, 1998.