Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.6.693

Bulk Polymerization of L-lactide Using Aluminium Organometallic Compound Supported on Functionalized Silica  

Yoo, Ji Yun (Department of Chemical Engineering, Kongju National University)
Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
Publication Information
Polymer(Korea) / v.36, no.6, 2012 , pp. 693-698 More about this Journal
Abstract
In this study aluminum isopropyl oxide ($Al(O-i-Pr)_3$) was supported on the amine-functionalized surface of silica to synthesize high molecular weight (MW) polylactide (PLA), and it was tested for PLA polymerization behaviors. A silica was funtionalized with silane compound having amine groups, then in-situ treated with $Al(O-i-Pr)_3$. $Al(O-i-Pr)_3$ attached to amine group on silica showed activity only in the presence of MAO (methyl aluminoxane). At the polymerization temperature of $115^{\circ}C$, the conversion and the MW of PLA were increased as the amount of silane was increased. At the polymerization temperature of $130^{\circ}C$, the conversion was decreased while the MW was increased drastically and reached to MW 44000 g/mol when the amine concentration was 3.0 mmol/g. A bimodal type GPC curve was shown at the polymerization temperature of $115^{\circ}C$. As the amount of amine group increased, the peaks of GPC curve were merged. At the polymerization of $130^{\circ}C$, a unimodal GPC curve was shown. $Al(O-i-Pr)_3$ supported on amine-functionalized silica was able to produce higher MW PLA with enhanced activity compared to homogeneous $Al(O-i-Pr)_3$.
Keywords
PLA; surface functionalization; silane; amine; aluminium complex;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Willke and K. D. Vorlop, Appl. Microbiol. Biotechnol., 66, 131 (2004).   DOI
2 L. Shen, E. Worrell, and M. Patel, Biofuel. Bioprod. Bior., 4, 25 (2010).   DOI
3 A. K. Yadav, A. B. Chaudhari, and R. M. Kothari, Crit. Rev. Biotechnol., 31, 1 (2011).   DOI   ScienceOn
4 Y. Tokiwa and B. P. Calabia, J. Polym. Environ., 15, 259(2007).   DOI
5 P. Sarazin, X. Roy, and B. D. Favis, Biomaterials, 25, 5965 (2004).   DOI   ScienceOn
6 K. Jamshidi, S. H. Hyon, and Y. Ikada, Polymer, 29, 2229 (1988).   DOI   ScienceOn
7 H. Li and M. A. Huneault, Polymer, 48, 6855(2007).   DOI   ScienceOn
8 R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000).   DOI   ScienceOn
9 D. Garlotta, J. Polym. Environ., 9, 63 (2001).   DOI   ScienceOn
10 A. Kowalski, J. Libiszowski, T. Biela, M. Cypryk, A. Duda, and S. Penczek, Macromolecules, 38, 8170 (2005).   DOI   ScienceOn
11 A. Kowalski, A. Duda, and S. Penczek, Macromolecules, 31, 2114 (1998).   DOI   ScienceOn
12 E. Kim, E. W. Shin, I. K. Yoo, and J. S. Chung, Macromol. Res., 17, 346 (2009).   DOI   ScienceOn
13 C. K. Williams, L. E. Breyfogle, S. K. Choi, W. W. Nam, V. G. Young, Jr., M. A. Hillmyer, and W. B. Tolman, J. Am. Chem. Soc., 125, 11350 (2003).   DOI   ScienceOn
14 H. J. Chuang, S. F. Weng, C. C. Chang, C. C. Lin, and H. Y. Chen, Dalton Trans., 40, 9601 (2011).   DOI   ScienceOn
15 A. Prebe, P. Alcouffe, P. Cassagnau, and J. F. Gerard, Mater. Chem. Phys., 124, 399 (2010).   DOI   ScienceOn
16 S. Yan, J. Yin, Y. Yang, Z. Dai, J. Ma, and X. Chen, Polymer, 48, 1688 (2007).   DOI   ScienceOn
17 A. Khanna, Y. S. Sudha, S. Pillai, and S. S. Rath, J. Mol. Model., 14, 367 (2008).   DOI
18 T. Furukawa, H. Sato, R. Murakami, J. Zhang, Y. X. Duan, I. Noda, S. Ochiai, and Y. Ozaki, Macromolecules, 38, 6445 (2005).   DOI   ScienceOn