Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.4.536

Nanoimprinting Pattern Formation Using Photo-Curable Acrylate Composites  

Kim, Sung-Hyun (Materials Research Center for Information Display, Kyung Hee University)
Park, Sun-Hee (Materials Research Center for Information Display, Kyung Hee University)
Moon, Sung-Nam (Department of Mechanical and Aerospace Engineering, Seoul National University)
Lee, Woo-Il (Department of Mechanical and Aerospace Engineering, Seoul National University)
Song, Ki-Gook (Materials Research Center for Information Display, Kyung Hee University)
Publication Information
Polymer(Korea) / v.36, no.4, 2012 , pp. 536-541 More about this Journal
Abstract
The effects of silica content were studied on UV curing characteristics and defect formations in imprinted patterns of hundreads nanometer size for the photo-curable imprinting composites with silica particles. An increase in elasticity and a decrease in shrinkage were observed with an increase in silica content in the imprinting resin which was UV cured at room temperature. However, the patterned nano-pillars were stuck together with neighboring nano-pillars if the amount of silica is more than 7 wt%. This can be ascribed to the increased viscosity of imperfectly cured resin due to the obstruction of the photo-reaction by silica particles. Addition of silica to the imprinting resin is useful in enhancing the strength of the cured resin although it is difficult to get good imprinted patterns for the resin with more than 7 wt% of silica due to the reduction of photo-reaction conversion.
Keywords
acrylate resin; silica nanoparticles; mechanical strength; imprinting; nano-pattern;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. W. Flick, Handbook of Adhesive Raw Materials, Noyes Publications, United Kingdom, 1990.
2 H. Zou, S. Wu, and J. Shen, Chem. Rev., 108, 3893 (2008).   DOI   ScienceOn
3 Z. S. Petrovic, I. Javni, A. Waddon, and G. Banhegyi, J. Appl. Polym. Sci., 76, 133 (2000).   DOI   ScienceOn
4 S. H. Kim, H. S. Chang, S. Park, and K. Song, Polymer(Korea), 34, 469 (2010).
5 S. X, Zhou, L. M. Wu, J. Sun, and W. D. Shen, J. Appl. Polym. Sci., 88, 189 (2003).   DOI   ScienceOn
6 T. Scherzer and U. Decker, Polymer, 41, 7681 (2000).   DOI   ScienceOn
7 W. D. Cook, Polymer, 33, 2152 (1992).   DOI   ScienceOn
8 S. Rimdusit, K. Punson, I. Dueramae, A. Somwangthanaroj, and S. Tiptipakorn, Eng. J., 15, 28 (2011).
9 P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, and H. H. Lee, Chem. Mater., 16, 5000 (2004).   DOI   ScienceOn
10 J. P. Matinlinna, P. K. Vallittu, and L. V. Lassila, J. Adh. Sci. Technol., 25, 179 (2011).   DOI   ScienceOn
11 C. P. Hemandez, L. J. Guo, and P. F. Fu, ACS Nano, 4, 4476 (2007).
12 X. Cheng, L. J. Guo, and P. F. Fu, Adv. Mater., 17, 1419 (2005).   DOI   ScienceOn
13 J. A. Rogers and H. H. Lee, Unconventional Nanopatterning Techniques and Applications, John Willey & Sons, United States, 2009.
14 B. S. Bae, Polym. Sci. Technol., 12, 716 (2001).
15 S. N. Kang, The Magazine of the IEEK, 33, 39 (2006).
16 H. Schift, J. Vac. Sci. Technol., B 26, 458 (2008).
17 J. Haisma, M. Verheijen, and K. Heuvel, J. Vac. Sci.Technol., B 14, 4124 (1996).
18 J. W. Park, K. Y. Bae, P. S. Kim, D. H. Lim, H. J. Kim, J. K. Cho, B. J. Kim, and S. H. Lee, J. Adh. Inter., 11, 57 (2010).