Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.4.507

Glass Transition Temperature and Isothermal Physical Aging of PMMA Thin Films Incorporated with POSS  

Jin, Sil-O (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Lee, Jong-Keun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Polymer(Korea) / v.36, no.4, 2012 , pp. 507-512 More about this Journal
Abstract
Thin (~650 nm) and ultrathin (~50 nm) films of neat PMMA and PMMA containing 5 wt% of methacryl-polyhedral oligomeric silsesquioxane were prepared in this work. The effects of film thickness and POSS on glass transition temperature ($T_g$) and isothermal physical aging were investigated by means of differential scanning calorimetry (DSC). $T_g$ depression was observed as film thickness was decreased and Ma-POSS molecules were incorporated. Enthalpy relaxation (${\Delta}H_{Relax}$) due to the isothermal physical aging was reduced by ultra-thin film thickness and the addition of Ma-POSS. KWW (Kohlrausch-Williams-Watts) equation was used to fit ${\Delta}H_{Relax}$ vs. aging time data providing the fitting parameters; maximum enthalpy recovery (${\Delta}H_{\infty}$), relaxation time (${\tau}$) and non-exponentiality parameter (${\beta}$).
Keywords
PMMA; thin film; POSS; glass transition temperature; isothermal physical aging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 .C. E. Struik, Physical Aging in Amorphous Polymer and Other Materials, Elsevier, Amsterdam, Chapter 1 (1978).
2 Y. Huang and D. R. Paul, Polymer, 45, 8377 (2004).   DOI   ScienceOn
3 Y. Huang and D. R. Paul, Macromolecules, 38, 10148 (2005).   DOI   ScienceOn
4 A. Lee and J. D. Lichtenhan, Macromolecules, 31, 4970 (1998).   DOI   ScienceOn
5 H. B. Lu and S. Nutt, Macromol. Chem. Phys., 204, 1832 (2003).   DOI   ScienceOn
6 H. B. Lu and S. Nutt, Macromolecules, 36, 4010 (2003).   DOI   ScienceOn
7 A. Kotal, S. Si, T. K. Paira, and T. K. Mandal, J. Polym. Sci. Part A: Polym. Chem., 46, 1111 (2008).   DOI   ScienceOn
8 E. T. Kopesky, S. G. Boyes, N. Treat, R. E. Cohen, and G. H. McKinley, Rheol. Acta, 45, 971 (2006).   DOI
9 A. L. Flory, T. Ramanathan, and L .C. Brinson, Macromolecules, 43, 4247 (2010).   DOI   ScienceOn
10 P. Rittigstein and J. M. Torkelson, J. Polym. Sci. Part B: Polym. Phys., 44, 2935 (2006).   DOI   ScienceOn
11 V. M. Boucher, D. Cangialosi, A. Alegría, and J. Colmenero, Macromolecules, 43, 7594 (2010).   DOI   ScienceOn
12 E. T. Kopesky, T. S. Haddad, R. E. Cohen, and G. H. Mckinley, Macromolecules, 37, 8992 (2004).   DOI   ScienceOn
13 V. M. Boucher, D. Cangialosi, A. Alegría, J. Colmenero, J. González-Irun, and L. M. Liz-Marzan, J. Noncryst. Solids, 357, 605 (2011).   DOI   ScienceOn
14 J. E. Nam, J. K. Lee, and T. C. Mauldin, Polym. Bull., 65, 825 (2010).   DOI
15 L. Zheng, R. J. Farris, and E. B. Coughlin, Macromolecules, 34, 8034 (2001).   DOI   ScienceOn
16 E. T. Kopesky, T. S. Haddad, R. E. Cohen, and G. H. Mckinley, Polymer, 46, 4743 (2005).   DOI   ScienceOn
17 K. Dalnoki-Veress, J. A. Forrest, C. Murray, C. Gigault, and J. R. Dutcher, Phys. Rev. E, 63, 031801 (2001).   DOI
18 C. B. Roth and J. R. Dutcher, Eur. Phys. J. E, 12 (s01), 24 (2003).
19 O. K. C. Tsui, T. P. Russell, and C. J. Hawker, Macromolecules, 34, 5535 (2001).   DOI   ScienceOn
20 J. Mattsson, J. A. Forrest, and L. Börjesson, Phys. Rev. E, 62, 5187 (2000).   DOI   ScienceOn
21 Y. P. Koh, G. B. McKenna, and S. L. Simon, J. Polym. Sci. Part B: Polym. Phys., 44, 3518 (2006).   DOI   ScienceOn
22 X. Wang and W. Zhou, Macromolecules, 35, 6747 (2002).   DOI   ScienceOn
23 G. Reiter, Macromolecules, 27, 3046 (1994).   DOI   ScienceOn
24 H. R. Brown and T. P. Russell, Macromolecules, 29, 798 (1996).   DOI   ScienceOn
25 S. L. Simon, J. Y. Park, and G. B. Mckenna, Eur. Phys. J. E, 8, 200 (2002).
26 K. Tanaka, A. Taura, S. R. Ge, A. Takahara, and T. Kajiyama, Macromolecules, 29, 3040 (1996).   DOI   ScienceOn
27 W. L. Wu, J. H. van Zanten, and W. J. Orts, Macromolecules, 28, 771 (1995).   DOI   ScienceOn
28 T. Kajiyama, K. Tanaka, and A. Takahara, Macromolecules, 30, 280 (1997).   DOI   ScienceOn
29 R. D. Priestley, L. J. Broadbelt, J. M. Torkelson, and K. Rukao, Phys. Rev. E, 75, 061806 (2007).   DOI
30 S. Kawana and R. A. L. Jones, Eur. Phys. J. E, 10, 223 (2003).   DOI
31 R. D. Priestley, C. J. Ellison, L. J. Broadbelt, and J. M. Torkelson, Science, 309, 456 (2005).   DOI   ScienceOn
32 R. D. Priestley, L. J. Broadbelt, and J. M. Torkelson, Macromolecules, 38, 654 (2005).   DOI   ScienceOn
33 O. K. C. Tsui and H. F. Zhang, Macromolecules, 34, 9139 (2001).   DOI   ScienceOn
34 J. L. Keddie, R. A .L. Jones, and R. A. Cory, Europhys. Lett., 27, 59 (1994).   DOI   ScienceOn
35 J. A. Forrest, K. Dalnoki-Veress, and J. R. Dutcher, Phys. Rev. E, 56, 5705 (1997).   DOI   ScienceOn
36 J. L. Keddie and R. A. L. Jones, Israel J. Chem., 35, 21 (1995).   DOI
37 S. Kawana and R. A. L. Jones, Phys. Rev. E, 63, 021501 (2001).   DOI